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Abstract

In malaria, individuals are often infected with different parasite strains. These multi-clonal
infections occur either because an individual received repeated mosquito bites from infectious
mosquitoes or because they received a single bite from an infectious mosquito harboring multiple
parasites. Such mixed infections may be composed of genetically unrelated strains or parasites
that are related. The number of genetically different parasite strains in an individual, known
as the complexity of infection (COI), provides important insight into the severity of infection
and the parasite population. Probabilistic likelihood and Bayesian models have been developed
to estimate the COI, but rapid direct measures such as heterozygosity or FwS have not been
directly related to the COI. Moreover, current methods have utilized statistics to determine the
relative COI that rely on the assumption that parasites in mixed infections are unrelated. In
this paper we present two new methods that use easily computable measures to directly estimate
the COI from sequence read depth data. Our methods are computationally efficient and are
proven to be comparably accurate to current methods in literature.
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1 Introduction

In 2015, the World Health Organization (WHO) released its global technical strategy for malaria
2016-2030, the newest in a set of reports outlining a strategy to reduce the malaria burden in
the world [1]. The report set several ambitious goals for the year 2030 including the reduction of
malaria mortality by 90% compared to the rates in 2015. To reach this goal, the authors set a
milestone of reducing mortality by 40% by 2020. Unfortunately, as the year 2020 has come and
gone, this milestone has not yet been reached [2].

Malaria remains a leading cause of death worldwide—in 2019, there were an estimated 229
million cases and 409,000 deaths around the globe [2]. Despite the considerable burden malaria
causes today, these numbers represent substantial progress that has been made globally to control
malaria in the last two decades. In fact, the WHO reports that 1.5 billion malaria cases and 7.6
million malaria deaths have been averted globally in the period of 2000–2019 [2]. The majority
of these gains reflect the increase of vector control initiatives [3–5], the development of highly
efficacious antimalarial combination therapies [6–8], and improved case management through the
deployment of rapid diagnostic tests (RDTs) [9–13].

However, there is evidence that progress has slowed and that there is a need for new approaches
to capitalize on the gains made [2]. One approach is the use of computational methods to help
inform eradication efforts [14–16], which often rely on recent advances in genetic sequencing and an
increased understanding of malaria biology. For example, the use of computational methods can
been used in the identification of polyclonal infections—malarial infections with multiple distinct
strains [17, 18]. Such polyclonal infections introduce additional genetic complexity that is often
difficult to computationally account for. As a result, many of the population genetic tools often
applied for the study of other organisms are unsuitable for studying malaria and researchers often
rely on limiting genetic analyses to individuals who are monoclonally infected [19].

In order to account for these limitations, a new field of work has emerged focusing on the com-
plexity of infection (COI). The COI represents the number of genetically distinct malaria strains
that can be identified in a particular individual. Polyclonal infections arise from one of two ways:
(i) a single infectious mosquito feeds on a human host transferring several parasite genomes (often
referred to as a co-transmission event [20, 21]) or (ii) an individual is infected by two or more
infectious mosquitoes with distinct malarial genotypes (known as a superinfection event [21, 22]).
Transmission intensity has been shown to impact the contribution of each event towards the gen-
eration of within-host parasite genetic diversity [23]. Superinfection is modulated by the host’s
current infections [24] as well as their age and exposure acquired immunity [25]. For these rea-
sons, measures of genetic diversity and COI are increasingly used for inferring malaria transmission
intensity and evaluating malaria control interventions [26].

2 Related work

Traditionally, the COI has been referred to as the multiplicity of infection (MOI) and has been
estimated using PCR amplification—a method to selectively amplify DNA or RNA targets. In
particular, the presence of different alleles at genes encoding the merozoite surface protein 1 and 2
(MSP1 and MSP2), surface proteins found on the merozoite stage of the malarial parasite [27,28],
can provide an estimate of the COI. However, such methods are hindered by limitations on the
number of loci examined [29, 30], and lack the ability to detect parasites at low parasitaemia in
samples [31].

With advances in sequencing technologies, new methods have been developed to address these
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concerns. Two early proposed methods: the FwS metric suggested by Auberun et al., which
characterizes within-host diversity and its relationship to population-level diversity [29], and the
estMOI software, which utilizes phasing information of alleles to estimate the COI [31], are a
step forward. However, the FwS metric does not provide a direct estimate of the COI and the
estMOI software relies on deep whole genome shotgun sequence data, which is costly to generate
at a large scale [30]. Alternative solutions to estimating the COI include the DEploid software
package which uses haplotype structure to infer the number of strains, their relative proportions,
and the haplotypes present in a sample [19]. Other methods have been developed to examine the
relatedness between parasite strains [32,33]. The current “gold-standard” method for determining
the COI of a sample is THE REAL McCOIL, which was built on the initially published COIL
method [30]. THE REAL McCOIL employs a Bayesian approach, turning heterozygous data into
estimates of allele frequency using Markov chain Monte Carlo [34]. Furthermore, it estimates the
COI of a sample using likelihood [34]. However, this approach is computationally expensive.

Despite various methods for estimating the COI, no rapid direct measures have been developed
that directly relate allelic read depth data to the COI, allowing for the easy estimation of the
COI. In this thesis, we present two new methods that use easily calculable measures to directly
estimate the COI from sequence read depth data. Our methods are computationally efficient and
are proven to be comparably accurate to current methods in literature. Furthermore, our methods
provide a framework for gaining insight into the relatedness of strains in mixed infections. Using
our methods, we have developed the software package coiaf in the programming language @, a
language and environment for statistical computing and graphics [35].

The remainder of this thesis is organized as follows. In Section 3 we develop the formulation
of the complexity of infection problem. Section 4 presents the methodologies we use to solve the
problem. Section 5 describes the data we use to test and investigate our models. Section 6 presents
our findings on simulated data and Section 7 illustrates our findings on real data. Furthermore, in
Section 8 we present new findings indicating the COI across the globe. Additional mathematical
formulations and figures are delegated to the Appendices.

3 Problem Formulation

Current gold-standard approaches for estimating COI rely on identifying the number of different
parasites present in an infection using high-throughput sequencing, equivalently referred to as
next-generation sequencing. In monoclonal infections, composed of only one parasite strain, all
sequence reads will be from the same parasite strain. However, in mixed infections, a combination
of each parasite strain will contribute to observed sequence reads. At genetic loci with prevalent
single-nucleotide polymorphisms (SNPs), there is an increased chance of observing multiple alleles.
The likelihood of observing a mix of nucleotides at any locus is dependent on both the number of
parasite strains in an infection as well as how prevalent polymorphisms are. This is the basis on
which the methods COIL [30] and THE REAL McCOIL [34] are derived and is also where we start
our formulation for a direct estimate of the COI.

For the purposes of our formulation, we focus on biallelic loci—loci at which only two nucleotides
are observed. In doing so, we may define the major allele as the allele that is most prevalent in
a population, and the minor allele as the allele that is least prevalent in a population. Assuming
for any individual there are l biallelic loci, we define the population-level allele frequency (PLAF)
as an l-dimensional vector p composed of the frequencies of the minor allele at each locus across a
population, namely p = (p1, . . . , pl), where pi ∈ [0, 0.5]. Furthermore, we define the within-sample
minor allele frequency (WSAF) as the frequency of the minor allele at each locus for a single
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individual, where the minor allele is defined as the minor allele in the population. For example,
the WSAF will be equal to 1 when all sequence reads observed at a given locus are the minor allele
defined for the population.

3.1 Number of Strains Containing the Minor Allele

We first derive an expression for the number of strains that have the minor allele. At any given
locus i, let Ni be the random variable corresponding to the number of strains with the minor
allele such that Ni ∈ {0, . . . , k}, where k is the COI. Assuming that parasite strains in a mixture
are unrelated, alleles in a sample are drawn at random from the PLAF. As a result, Ni follows a
binomial distribution:

P(Ni = ni) =

(
k

ni

)
pni
i (1− pi)k−ni , ni ∈ {0, . . . , k}. (1)

3.2 Method 1: Probability a Locus is Heterozygous

In Method 1, we examine all loci and wish to identify the probability of locus i being heterozygous.
Recall that heterozygous sites contain two distinct alleles: the major and minor alleles. We denote
by Vi, a random variable which takes the value of 1 if a site is heterozygous and 0 otherwise.
Therefore, the probability that locus i is heterozygous, written as P(Vi = 1), is equal to 1 minus the
probability that a locus is homozygous, i.e., all strains contribute to the minor allele or all strains
contribute to the major allele. Using Equation (1), we thus write,

P(Vi = 1) = 1− pki − (1− pi)k, (2)

where pi is the population-level allele frequency of the minor allele, 1 − pi is the population fre-
quency of the major allele, and k is the COI. As the COI increases, the probability of observing a
heterozygous locus also increases, as described by Equation (2) and shown in Figure 1A.

3.3 Method 2. Expected within-sample Minor Allele Frequency

As defined earlier, let pi be the PLAF of the minor allele at locus i. Furthermore, let k be the COI
of the sample. We wish to examine all heterozygous loci. If locus i is heterozygous, i.e., Vi = 1, the
number of copies of the minor allele at i must be 1 ≤ ni ≤ k − 1.

Next, suppose we have k malarial parasite strains. At each locus, we denote the number of times
each strain was sampled with a vector of random variables Yi = (Yi1 , . . . , Yik). We can model the
number of samples of each strain using a Multinomial distribution. Thus the expected number of
samples of strain j at locus i can be represented as

E[Yij ] = misij , (3)

where mi is the number of samples drawn at locus i and sij is the probability of drawing strain j at

locus i such that sij ≥ 0, ∀j and
∑k

j=1 sij = 1. We can further treat the proportion of each strain

as a random variable, i.e., Si = (Si1 , . . . , Sik) such that Sij ≥ 0,∀j and
∑k

j=1 Sij = 1, described
by a Dirichlet distribution. Combining our two distributions, we obtain a Dirichlet-multinomial
distribution. In essence, at each locus, we draw from the k strains using a Multinomial distribution,
where the probability of sampling each strain is given by the Dirichlet distribution. Using the law
of iterated expectations, we represent the expected value of this compound distribution as

E[Yij ] = miE[Sij ]. (4)
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Recall that the expected value of Sij can be given by the expected value of the Dirichlet distribution:

E[Sij ] =
αij∑
k αik

, (5)

where αij is the concentration or scaling parameter of the Dirichlet distribution of strain j at
locus i. Combining Equation (4) and Equation (5), we obtain the expected value of our compound
distribution:

E[Yij ] = mi
αij∑
k αik

. (6)

Given the expected number of samples of strain j at locus i, we can find the expected WSAF
of the minor allele by measuring the expectation over all strains. Furthermore, we are interested
in strains that contribute to the minor allele and as a result, the number of samples will be ni at
locus i. We denote the WSAF at locus i as Wi and can define the expected WSAF given ni strains
contribute to the minor allele at locus i as

E[Wi|Ni = ni] =
1

k

k∑
j=1

ni
αij∑
k αik

E[Wi|Ni = ni] =
ni
k
. (7)

In order to find the expected value of the WSAF given that locus i is heterozygous, we can use
the law of total expectation:

E[Wi|Vi = 1] = E[E[Wi|Vi = 1, Ni = ni]]

=

k∑
ni=0

E[Wi|Vi = 1, Ni = ni]P(Ni = ni)

=
k∑

ni=0

wiP(Wi|Vi = 1, Ni = ni)P(Ni = ni)

=
k∑

ni=0

wiP(Wi, Vi = 1|Ni = ni)
P(Ni = ni)

P(Vi = 1)
. (8)

We note that P[Wi, Vi = 1|Ni = ni] = 0 if ni = 0 or ni = k. Therefore,

E[Wi|Vi = 1] =
k−1∑
ni=1

wiP(Wi, Vi = 1|Ni = ni)
P(Ni = ni)

P(Vi = 1)

=

k−1∑
ni=1

E[Wi|Ni = ni]
P(Ni = ni)

P(Vi = 1)

=

k−1∑
ni=1

ni
k

(
k
ni

)
pni
i (1− pi)k−ni

1− pki − (1− pi)k

=
k−1

1− pki − (1− pi)k
k−1∑
ni=1

ni

(
k

ni

)
pni
i (1− pi)k−ni . (9)
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We note that the sum in Equation (9) represents the expected value of the binomial distribution
less the case where n = 0 or n = k. Thus,

k−1∑
ni=1

ni

(
k

ni

)
pni
i (1− pi)k−ni =

k−1∑
ni=0

ni

(
k

ni

)
pni
i (1− pi)k−ni

=
k∑

ni=0

ni

(
k

ni

)
pni
i (1− pi)k−ni − kpki

= kpi − kpki . (10)

Substituting Equation (10) into Equation (9), we obtain

E[Wi|Vi = 1] =
pi − pki

1− pki − (1− pi)k
. (11)

Note that Method 1 and Method 2 both depend on the COI and the population-level allele
frequency. However, Method 1 identifies the probability of a locus being heterozygous, denoted as
P(Vi = 1), whereas Method 2 identifies the expected value of the within-sample allele frequency
given a site is heterozygous, denoted as E[Wi|Vi = 1].

4 Estimation Method

Given data, D : {(pi, wi), i = 1, . . . , l}, where pi is the PLAF at locus i and wi is the WSAF at
locus i, we next explore our methods to approximate the COI of a sample.

4.1 Data Processing

Data are first processed to account for sequencing errors. The amount of sequence error assumed
may either be provided by the user or inferred directly from the distribution of the data. For
additional information, see Appendix A.

Following adjustment for sequence error, consider an arbitrary data point (pi, wi). We de-
fine a partition over the range of pi constituent of sets P1, . . . ,PN such that pi ∈ Pm if pi ∈
[am, bm), am < bm, i = 1, . . . , l. In doing so, we group our data into N bins. Furthermore, we
define p̂m as

p̂m =
bm − am

2
. (12)

p̂m can therefore be thought of as the midpoint of each group of data points. In order to ensure the
presence of sufficient data in each set of our partition, we adjust the values of am and bm such that
the number of data points in Pm is greater than c, i.e., |i : pi ∈ Pm| > c, where c is a predefined
size.

Recall that Method 1 and Method 2 examine different random variables. Specifically, Method
1 identifies the probability of a locus being heterozygous, P(Vi = 1) and Method 2 identifies the
expected value of the WSAF given a site is heterozgyous, E[Wi|Vi = 1]. When approximating the
COI using Method 1, we define t̂1,m as the average vi over Pm, using the subscript 1 to indicate
Method 1.

t̂1,m =

∑l
i=1 1{pi∈Pm}vi

|i : pi ∈ Pm|
, (13)
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where vi = 1 if locus i is heterozygous and 1 is the indicator function, such that 1{pi∈Pm} = 1 when

locus i is in set Pm. t̂1,m therefore represents the mean number of loci with PLAF less than bm
and greater than or equal to am, i.e., within the set Pm, that are heterozygous.

For Method 2, we define t̂2,m as the mean WSAF for all heterozygous loci with PLAF less than
bm and greater than or equal to am, i.e., within the set Pm:

t̂2,m =

∑l
i=1 1{pi∈Pm}wi

|i : pi ∈ Pm|
, (14)

where wi is the WSAF at locus i.

4.2 Optimization Problem

In order to determine the COI, we utilize the expressions Equation (2) and Equation (11). For the
sake of simplicity, we define Equation (2) as f1(p) and Equation (11) as f2(p):

f1(p) , P(Vi = 1) = 1− pki − (1− pi)k (2)

f2(p) , E[Wi|Vi = 1] =
pi − pki

1− pki − (1− pi)k
. (11)

To estimate the COI, we next solve the following minimization problem for Method 1:

min
k

(
N∑
m=1

|(t̂1,m − f1(p̂m)|q
)1/q

, (15)

and the following minimization problem for Method 2:

min
k

(
N∑
m=1

|(t̂2,m − f2(p̂m)|q
)1/q

, (16)

where q ≥ 1. In our implementation, the default value of q is 2, corresponding to the `2 norm.

4.3 Solution Methods

We solve this optimization problem using two methods: (i) we solve the optimization problem using
only discrete values of the COI and (ii) we solve the optimization problem using continuous values
of the COI. Recall that the COI is defined as the number of genetically distinct malaria parasite
strains an individual is infected with. As such, a continuous value for the COI does not have
biological meaning—only discrete values for the COI are applicable. However, in the real world,
deviations from our assumptions may be present. When this is the case, our discrete estimate will
not be accurate. A continuous estimate, although not biologically interpretable as the COI, may
provide more information on potential causes of the deviation from our assumptions. For example,
our model assumes that parasite strains are unrelated. However, in the real world, relatedness in
mixed infections is common [33]. A continuous COI may be able to provide insight into the level
of relatedness between malarial strains.
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4.3.1 Discrete Optimization

The simplest method to solve the discrete versions of the aforementioned optimization problems is
through the use of a brute force approach—for our optimization problems, this involves computing
the objective function for each COI considered. As brute force approaches can be computationally
inefficient, we limit the range of values of the COI. In particular, we set the default range of COIs
to examine from 1 till 25. In addition to the estimated COI, our discrete optimization method
also returns a measure of the confidence of the result. Let us assume that we optimize over k COI
values. For any given COI, i, let oi be the result of our objective function. As we aim to reduce the
value of our objective function, we first compute the reciprocal of each oi: 1/oi. We next normalize
1/oi by dividing by the sum of the vector o, which represents the value of the objective function
at all k COIs. In doing so, we generate a probability density function, which can provide insight
into the confidence of our results.

4.3.2 Continuous Optimization

To solve the continuous versions of the optimization problems, we utilize @’s built in optimization
function [35]. This function provides general-purpose optimization based on several optimization
algorithms. For our purposes, we utilize an L-BFGS-B approach to solve our optimization problem
[36]. This method builds on the BFGS quasi-Newton algorithm for solving optimization problems
[37–40]. L-BFGS-B provides an added benefit over BFGS as it allows for box constraints, i.e.,
each variable can be given an upper and lower bound. In using this method, we may thus restrict
our estimated COI to a certain range. As when solving the discrete versions of our optimization
problems, we set the default range of COIs to examine from 1 to 25.

5 Data

To evaluate the performance of our methods, we utilize simulated data, which allow us to evaluate
the accuracy and sensitivity of our methods, and sequencing data sampled from infected individuals
collected worldwide, which aids in the comparison to the current state-of-the-art metric. Further-
more, using data sampled from individuals worldwide, we investigate the distriibution of COI across
the world.

5.1 Simulator Details

In order to test our mathematical methods, we created a simulator that generates synthetic se-
quencing data for a number of individuals in a given population. Each individual is assigned a
COI value, which is used to simulate the number of sequence reads mapped to the reference and
alternative allele for the biallelic SNPs considered. These are then used to derive the within-sample
frequency of the population-level minor allele, wi, at each locus.

We first define the number of loci being simulated, l. We assume that the distribution of
reference allele frequencies for locus i, Ri, is described by a Beta distribution with shape parameters
α and β:

P(Ri = ri) =
Γ(α+ β)

Γ(α)Γ(β)
r
(α−1)
i (1− ri)(β−1),

where Γ is the Gamma function. In our simulations, we assume α = 1 and β = 5 and draw l
values of Ri. In Equation (2) or Equation (11), we have defined relationships with respect to the
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frequency of the minor allele, pi. Recall that pi ∈ [0, 0.5]. Thus, we define

pi =

{
ri ri ≤ 0.5

1− ri ri > 0.5.

To simulate wi for each individual, we first assign the COI, k. Next, we simulate the genotype
at locus i, drawing k values from a Binomial distribution with probability pi, i.e., the probability
of having the minor allele at locus i is equal to the population-level frequency of the minor allele.
This yields the matrix, G ∈ Rk×l, with k rows and l columns defining the phased haplotype of each
strain, where Gi,j = 1 indicates that strain j at locus i has the minor allele.

To determine the number of sequence reads related to each strain, we first draw the proportion
of each strain, S = (S1, . . . , Sk), in an individual with k strains, which we assume is described by
a Dirichlet distribution with concentration parameters α1, . . . , αk. The “true” WSAF of the minor
allele at locus i, denoted τi, is thus given by the sum of the strain proportions for strains with the
minor allele. We can express this using matrix multiplication:

τ = S×Gi,

where τ ∈ R1×l, S ∈ R1×k, and G ∈ Rk×l.
In simulations with no assumed sequence error, the number of sequence reads with the minor

allele at each locus is given by sampling from a Binomial distribution c times with probability
τ , where c is the assumed number of sequence reads, i.e., the read depth or coverage. However,
in simulations with sequence error, we perturb the “true” WSAF by assuming that a number of
sequence reads are incorrectly sampled. An incorrectly sampled locus with the major allele will
yield the minor allele and vice versa. In our simulations, we assume a fixed sequence error, ε, such
that the probability of correctly sampling the minor allele is 1−ε, and the probability of incorrectly
sampling the minor allele is ε. Therefore, we can represent the probability of sampling the minor
allele, now denoted as τε to indicate the added error, as

τε = τ (1− ε) + (1− τ )ε.

Lastly, we may account for overdispersion—additional unexpected variability in our data—and
sample the number of sequence reads with the minor allele at each locus from a Beta-binomial
distribution rather than a Binomial distribution. Dividing the number of instances of the minor
allele by the coverage at each locus results in the simulated WSAF.

5.2 Real Data

To apply our developed methods to real whole genome sequence data, we analysed samples from
the MalariaGEN Plasmodium falciparum Community Project [41]. The MalariaGEN Plasmodium
falciparum Community Project provides genomic data from over 7,000 P. falciparum samples from
28 malaria-endemic countries in Africa, Asia, South America, and Oceania from 2002-2015 [41].
Detailed information about the data release including brief descriptions of contributing partner
studies and study locations is available in the supplementary of MalariaGEN et al. [41].

5.2.1 Pre-processing

Samples collected from field isolates were initially sequenced. The median depth of coverage was
73 sequence reads averaged across the whole genome and across all samples. Human-derived reads
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were removed, samples were mapped to the P. falciparum 3D7 reference genome, and variants called
using GATK (Genome Analysis Toolkit) best practices [42, 43]. After removing replicate samples
as well as samples with low coverage, suspected contamination or mislabelling, and mixed-species
samples, 5,970 samples remained for further analysis.

After selecting the 5,970 samples, we first filtered the genomic data for high quality biallelic
coding and non-coding SNPs as outlined in [33]. We next filtered to variants with an alternative al-
lele frequency of greater than 0.05—sequence error likely complicates the detection of true variation
stemming from multiple strains for variants at lower frequencies.

To apply our developed methods for estimating COI, we need to estimate the population-level
frequency of the minor allele. Consequently, we sought to assign the samples to a suitable number of
geographic regions that would be likely to have similar genetic diversity, while ensuring a sufficient
number of samples per region for reliable estimation of the population-level allele frequencies. We
used the Partitioning Around Medoids (PAM) algorithm to solve a k-medoids clustering problem
[44,45] in order to group samples based on their longitude and latitude of sample collection. We next
calculated the silhouette information for each clustering of k groups [46], arriving at 24 locations
globally (see Appendix B for a map of locations).

5.2.2 THE REAL McCOIL Runs

To compare our method against the “gold-standard” for estimating COI, THE REAL McCOIL,
we first had to estimate the COI using THE REAL McCOIL [34]. The total number of variants
across the genome is computationally untractable for THE REAL McCOIL and is unsuitable for the
algorithm given that many SNPs will be in linkage disequilibrium (LD), the non-random association
of alleles at different loci in a given population, with each other. In response, we first identified
a common set of SNPs such that the minor allele frequency of variants was greater than 0.05
globally and within each of the 24 identified regions. From this set of SNPs we selected subsets
of SNPs that were not in LD by first calculating the genetic autocorrelation [47] among SNPs by
genetic distance and filtering to sets of SNPs with autocorrelation less than 0.8. For each of the
24 regions, 5 unique sets of LD filtered variants were created. The COI was estimated for each
set using both the methods developed in this analysis as well as using THE REAL McCOIL (v2)
with details outlined in [48]. In overview, the THE REAL McCOIL categorical method was used,
with heterozygous loci called using the genotype called during variant calling. Default priors were
assigned for each parameter used by THE REAL McCOIL, with a maximum observable COI equal
to 25 and sequencing measurement error estimated along with COI and allele frequencies. COI
estimates were compared between regions using 100,000 repetitions of a non-parametric bootstrap
[49,50] to estimate the 95% confidence interval from the bootstrapped COI density.

6 Performance on Simulated Data

6.1 Overall Performance

We initially present the results of our findings on data sequenced from 1,000 loci with a read depth
of 400 at each locus. Data was simulated ranging from a complexity of infection of 1 to 25. No
error was introduced to our simulator and as a result, our methods accounted for no sequencing
error. The results of running the discrete version of both Method 1 and Method 2 are illustrated
in Figure 1C and Figure 1D, respectively.

Method 1 and Method 2 perform well for all COIs between 1 and 25. Notably, the lower the
true value of the COI, the better our models perform with a mean absolute error close to 0. As the
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Figure 1. Estimating the COI on simulated data. In (A) and (B) the relationship between the
within-sample minor allele frequency (WSAF) and the population-level allele frequency (PLAF) is shown
for an example simulation with a COI of 4. In (A), all loci are shown whereas in (B), only heterozygous loci
are plotted. The theoretical relationships for a COI of 1-5 (A) and 2-6 (B) are shown as dashed red lines for
Method 1 (A) and Method 2 (B). The solid red line represents the vectors we examine in our optimization
problems, namely t1,m and t2,m. In other words, in (A), the solid red line indicates the mean number of
loci that are heterozygous in each PLAF bin and in (B), the solid red line indicates the mean WSAF for all
heterozygous loci in each PLAF bin. The performance of Method 1 (C) and Method 2 (D) is shown for 100
simulations of a COI of 1-25 with 1,000 loci, a read depth of 400, no error added to the simulations, and no
sequencing error assumed. Point size indicates density, with the red line representing the line y = x. The
mean absolute error for each method is shown in (E). The black bars indicate the 95% confidence interval.

COI increases, our models exhibit more variability across subsequent iterations. For example, at a
COI of 25, the estimated COI from Method 2 ranges from 20 to 30, the maximum COI our model
could output in these trials (see Figure 1D). Nevertheless, the majority of predicted COIs remain
close to the true COI as witnessed by the low mean absolute errors of at most 2 (see Figure 1E).

Comparing our two methods, Method 1 appears to outperform Method 2. In particular, Method
1 exhibits less variability than Method 2. Furthermore, Method 1 tends to have a slightly lower
mean absolute error than Method 2. However, the mean absolute error’s 95% confidence inter-
vals overlap and as such the difference in the performance of the two methods is not statistically
significant.

The difference in performance between Method 1 and Method 2 is further amplified when data
is simulated for a larger range of COI values. Figure 2 illustrates the performance of Method 1 and
Method 2 for COI values from 1 to 40. Although a COI of 40 is very unrealistic and not likely to
be seen in a real sample, by examining the performance of our algorithms in extreme situations,
we can better understand the strengths and weaknesses of our models.
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(a) Discrete Method (b) Continuous Method

Figure 2. Performance with Changing COI. The performance of Method 1 and 2 is compared across
a COI of 1-40. Data was simulated 100 times from 1,000 loci with a coverage of 200. No error was introduced
into our simulations and a sequence error of 1% was assumed. In (a), the discrete estimation is shown and in
(b), the continuous estimation is shown. In both cases, the distribution of estimated COI for Method 1 (A)
and Method 2 (B) is plotted. In (a), dot plots are used where point size indicates density. In (b), a boxplot
shows the interquartile range, with whiskers indicating the 95% quantile range and outliers indicated with
dots. The mean absolute error is shown in (C) for both methods, with the 95% quantile computed from
1,000 bootstrap repetitions at each COI indicated with error bars.

Again visible is the fact that Method 1 tends to outperform Method 2, especially at high values
of the COI. Interestingly, it is also apparent that at high COI values, both Method 1 and Method 2
tend to underpredict the true value of the COI, with mean absolute errors around 15 when the true
value of the COI is 40. Looking at Figure 1A and Figure 1B, this underprediction is expected. In
particular, recall that the PLAF is bounded by [0, 0.5] and that the output of Method 1 and Method
2 is bounded by [0, 1]. As the COI increases, the value of the objective function for subsequent
COIs becomes more similar. This occurs for both Method 1 and Method 2. Visually speaking,
this behavior can be witnessed by the dashed red lines in Figures 1A and 1B appearing closer. As
a result, at larger COI values, it is harder for our algorithm to solve our optimization problems
and consequently, we are less confident in our estimate of the COI. Additionally, at higher COIs
it becomes increasingly likely that each strain does not contribute to the observed sequence reads.
This will be increasingly likely as the sequence coverage decreases. For example, in extreme cases
when the COI is greater than the sequence coverage, it is impossible for each strain to have been
sequenced at any given locus. As a result, it becomes increasingly combinatorially probable that
some strains will be underrepresented in the sequencing data and thus will lead to lower inferred
COIs. This will be more pronounced if the proportions of each strain are heavily skewed.

6.2 Sensitivity Analysis

In order to understand the sensitivity of our models to alterations in the parameters considered,
we rigorously tested the performance of the discrete and continuous representations of Method 1
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and Method 2, assessing changes in the accuracy of our predictions. For each sample, we utilized
bootstrapping techniques to determine the mean absolute error of the predicted COI compared
to the true COI. Furthermore, we ran each sample several times to ensure reliable results. A
description of several key parameters perturbed and their default values can be found in Table 1.
Unless otherwise specified, simulations used the default values presented. Additional figures may
be found in Appendix C.

Parameter Description Default Value

COI The complexity of infection Estimated

Coverage The coverage at each locus 200

Loci
The number of loci examined across the
genome

1,000

Alpha
The alpha parameter used to generate strain
proportions from a Dirchlet distribution

1

Overdispersion
The extent to which counts are overdispersed
relative to the Binomial distribution when
simulating data

0

Epsilon
The probability of a single read being mis-
called as the other allele

0

Sequence Error The level of sequencing error that is assumed 1%

Table 1. Description of Select Parameters

6.3 Controllable Sequencing Conditions

We next examine the effect of varying two metrics that can be controlled in the field: the read
depth at each locus and the number of loci sequenced. Sequencing more loci at larger read depths
is generally preferred. However, this can be technically difficult and relies on high-quality sample
collection and often larger volumes of infected blood being drawn rather than the use of dried red
blood spots. However, analyzing larger numbers of data might prove computationally expensive.
Therefore, the trade-off between additional data and computational efficiency must be carefully
weighed.

Figure 3 demonstrates the performance of Method 1 as the coverage is varied from as low as 25
to as high as 800 reads. The analogous figure for Method 2 can be found in Appendix C. In general,
as the coverage at each locus increases, the performance of our methods also increases. Interestingly,
however, the relationship is not linear, rather, a non-monotonic relationship is observed between
sequence coverage and the mean absolute error. At the lowest coverage tested, 25 reads per locus,
our models exhibit a high mean absolute error—at such a low coverage, low prevalence malarial
strains may be underrepresented and, as such, we expect that our models will underpredict the
COI. An increase to a coverage of 50 greatly improves the performance. From a coverage of above
50 there are further improvements in the accuracy, however, it is dependent on the COI being
estimated. At low COIs (< 10), non-significant decreases in mean absolute error are observed.
However, at higher COIs, there is a significant benefit to higher sequence coverage. However,
for all COI explored, the performance remains relatively constant with coverage greater than 200,
indicating that more than 200 reads may not provide a substantial improvement in COI estimation.

Figure 4 indicates the performance of Method 1 as the number of loci sampled changes for the
discrete and continuous versions of our optimization problems. Results for Method 2 are similar
and can be found in Appendix C. As was the case for our coverage data, when the number of loci
sequenced is low, around 100 loci, our methods have a very high variability and tend to underpredict.
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(a) Discrete Method (b) Continuous Method

Figure 3. Performance of Method 1 with Changing Coverage. The performance of Method 1
is compared across a COI of 1-20. Data was simulated 100 times with a coverage of 200. No error was
introduced into our simulations and a sequence error of 1% was assumed. In (a), the discrete estimation is
shown and in (b), the continuous estimation is shown. In both cases, the distribution of estimated COI as
the number of loci examined changes from 100 (A) to 1,000 (B) and 10,000 (C) is plotted. In (a), dot plots
are used where point size indicates density. In (b), a boxplot shows the interquartile range, with whiskers
indicating the 95% quantile range and outliers indicated with dots. The mean absolute error is shown in (C)
for both methods, with the 95% quantile computed from 1,000 bootstrap repetitions at each COI indicated
with error bars.

However, as the number of loci increases to 1,000, the performance increases. As was the case in
examining the read depth of loci, increasing the number of loci examined above a certain threshold,
in this case 1,000 loci, does not seem to substantially impact the performance of our models. We
also note that the increase in the number of loci does reduce the variance of our estimates.

6.4 Malarial Biology

We next examine the effect of varying inputs to our simulator. In particular, we explore how
perturbing the value of alpha, which is the concentration parameter used to determine the pro-
portion of each strain from a Dirichlet distribution changes the performance of our methods. A
larger alpha value decreases the variance in strain proportions and consequently the strains are
more likely to be at comparable parasite density and more likely to equally contribute to sequence
reads, which, in turn, would be expected to improve the accuracy of our methods. This is more
likely to occur during cotransmission events when parasites are acquired from the same infectious
bite [21]. However, note this will likely increase the relatedness of parasites, which will invalidate
our assumptions and decrease the accuracy of our methods. Furthermore, we examine the effect
of introducing overdispersion in sequence coverage such that the probability of sampling a minor
allele at each locus with each sequence read is not equal to the true WSAF, but randomly drawn
from a Beta-Binomial distribution. With smaller overdispersion assumed, the sampling process
increasingly tends towards being described by the Binomial distribution. Modelling sequencing in
this way is chosen to model scenarios in which parasite strains, despite a high parasite density, may
be underrepresented in sequencing. For example, this could be due to sequestration during part of
the parasite’s life cycle [51].

Figure 5 demonstrates the effect of changing alpha for the discrete and continuous versions of
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(a) Discrete Method (b) Continuous Method

Figure 4. Performance of Method 1 with Changing Number of Loci. The performance of Method
1 is compared across a COI of 1-20. Data was simulated 100 times with a coverage of 200. No error was
introduced into our simulations and a sequence error of 1% was assumed. In (a), the discrete estimation is
shown and in (b), the continuous estimation is shown. In both cases, the distribution of estimated COI as
the number of loci examined changes is plotted. In (a), dot plots are used where point size indicates density.
In (b), a boxplot shows the interquartile range, with whiskers indicating the 95% quantile range and outliers
indicated with dots. The mean absolute error is shown in (C) for both methods, with the 95% quantile
computed from 1,000 bootstrap repetitions at each COI indicated with error bars.

Method 1. The analogous figure for Method 2 can be found in Appendix C. Figure 6 illustrates
the effect of changing the overdispersion for both Method 1 and Method 2.

We note that as the value of alpha increases, the performance of our methods also increases, as
was expected. Furthermore, the smaller the overdispersion present in our simulated data, the better
our models perform. This makes intuitive sense as larger overdispersion values leads to deviation
from our assumed distributions.

Lastly, we examine the effect of introducing error into our simulated data. In particular, we set
the error rate to be 0.1, i.e., the probability that a single read is miscalled as the other allele is 1%.
We then evaluate the impact of introducing sequencing error on the performance of our methods.
Figure 7 illustrates the results when we utilize Method 1. An analogous figure for Method 2 can
be found in Appendix C. When we introduce error into our simulations, we see that our methods
overpredict the COI, especially when the level of sequence error assumed is low. However, as
the level of sequence error assumed increases, our methods’ performance increases. Too much
assumed sequence error causes our methods to underpredict the COI, indicating that there is fine
line between too little and too much sequence error. These results highlight the importance of
accurately detecting the level of sequence error of samples.
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(a) Discrete Method (b) Continuous Method

Figure 5. Performance of Method 1 with Changing Alpha. The performance of Method 1 is
compared across a COI of 2-20. Data was simulated 100 times from 1,000 loci with a coverage of 200. No
error was introduced into our simulations and a sequence error of 1% was assumed. In (a), the discrete
estimation is shown and in (b), the continuous estimation is shown. In both cases, the distribution of
estimated COI as alpha changes is plotted. In (a), dot plots are used where point size indicates density. In
(b), a boxplot shows the interquartile range, with whiskers indicating the 95% quantile range and outliers
indicated with dots. The mean absolute error is shown in (C) for both methods, with the 95% quantile
computed from 1,000 bootstrap repetitions at each COI indicated with error bars.
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(a) Discrete Method (b) Continuous Method

Figure 6. Performance with Changing Overdispersion. The performance of Method 1 and Method
2 is compared across a COI of 2-20. Data was simulated 100 times from 1,000 loci with a coverage of
200. No error was introduced into our simulations and a sequence error of 1% was assumed. In (a), the
discrete estimation is shown and in (b), the continuous estimation is shown. In both cases, the distribution of
estimated COI as the overdispersion changes is plotted. In (a), dot plots are used where point size indicates
density. In (b), a boxplot shows the interquartile range, with whiskers indicating the 95% quantile range
and outliers indicated with dots. The mean absolute error is shown in (C) for both methods, with the 95%
quantile computed from 1,000 bootstrap repetitions at each COI indicated with error bars. The panel with
a “1” indicates the error for Method 1 and the panel with a “2” indicates the error for Method 2.

(a) Discrete Method (b) Continuous Method

Figure 7. Performance of Method 1 with Changing Sequence Error. The performance of Method
1 is compared across a COI of 2-20. Data was simulated 100 times from 1,000 loci with a coverage of 200. An
error rate of 0.1 was introduced into our simulations, i.e., the probability that a single read is miscalled as
the other allele is 1%. In (a), the discrete estimation is shown and in (b), the continuous estimation is shown.
In both cases, the distribution of estimated COI as the level of sequence error assumed changes is plotted.
In (a), dot plots are used where point size indicates density. In (b), a boxplot shows the interquartile range,
with whiskers indicating the 95% quantile range and outliers indicated with dots. The mean absolute error
is shown in (C) for both methods, with the 95% quantile computed from 1,000 bootstrap repetitions at each
COI indicated with error bars.
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7 Comparison to Gold Standard

In this section we compare our novel methods to estimate the COI to the current “gold-standard”
method to estimate the COI, THE REAL McCOIL. As was previously described, we identified 24
regions around the world and estimated the COI for each sample in each region. For each of the
5,970 samples, we examined an average of 5, 537 loci. We ran THE REAL McCOIL 5 times on
each sample and ran our models 10 times on each sample, reporting the median estimated COI.
Figure 8 and Figure 9 examine our estimated COI as well as THE REAL McCOIL’s estimated COI
stratified by the 24 regions data was sampled from. Figure 19 compares the predicted COI over
all regions and can be found in Appendix C. In each figure, the estimated COI using THE REAL
McCOIL is plotted on the x-axis. For all samples of a specific COI value, we plot the results of our
methods on the y-axis. If our methods and THE REAL McCOIL predict the same COI, we expect
that data points will fall along the line y = x.

Predicting the COI by solving the discrete version of our optimization problems, we observe
that when the COI is low, Method 1 performs well and frequently estimates the same value as THE
REAL McCOIL. More specifically, if THE REAL McCOIL predicts the COI is 3 or less, Method
1 predicts the same value more than 90% of the time. Although there are some exceptions to this
observation, these results are encouraging. For larger values of the COI, i.e., when THE REAL
McCOIL predicts that the COI is more than 4, Method 1 predicts lower values than THE REAL
McCOIL. Such is apparent in Regions 14 and 24, for example. Method 2 follows the same general
trends, but its predictions vary more. When THE REAL McCOIL predicts the COI is 1, Method
2 agrees with the majority of the samples. However, there are several samples for which Method
2 greatly overpredicts the COI. For instance, in Region 1, Method 2 predicts a COI as high as
25, the highest our algorithm was allowed to predict. Several reasons for why this might be the
case will be explored in the next subsection. Interestingly, Method 2 also overpredicts when THE
REAL McCOIL predicts the COI is 2. However, the same trend is not seen for when THE REAL
McCOIL estimates a COI of 3. Rather, for a COI of 3 and higher, Method 2 begins to exhibit
trends similar to Method 1, underestimating the COI.

When we estimate the COI by solving the continuous version of our optimization problems,
our results support the observations of the discrete case. Namely, when THE REAL McCOIL
estimates the COI to be low, our methods also estimate the COI to be low. As was the case in the
discrete case, although Method 2 predicts high COI values for several samples, the majority of its
predictions are the same as THE REAL McCOIL’s. Interestingly, in many cases, our predictions
appear to be closer to THE REAL McCOIL’s prediction, i.e., the points in our figure are closer
to the line y = x. This result is expected. If we compare the values estimated by our discrete
methods and continuous methods, we notice that the discrete COI often represents the rounded
continuous COI. In other cases, the discrete COI is the floor or ceiling of our continuous estimate.
As a result, in cases where we estimated the continuous value of the COI was, for example, 1.2,
the discrete value of the COI would be 1. If THE REAL McCOIL predicted that the COI was
2, our continuous estimation would appear more similar to THE REAL McCOIL’s prediction. As
noted previously, a continuous value of the COI has no biological relevance—it is not possible to be
infected with a non-integer number of malarial parasite. However, a continuous value of the COI
may indicate additional information about the parasite dynamics of an infection. In particular, a
COI of 1.7 may indicate that the patient is infected with 2 related parasite strains. Following the
same logic, a COI of 5.5 may mean that a patient is infected with 6 parasite strains where some are
related. However, it could also mean that the patient is infected with 7, 8, or even more strains that
are highly related. As a result, by assuming unrelatedness in our methods it becomes increasingly
difficult to accurately estimate high COI values. In particular, at high COI values, it is likely that
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a number of parasites will be related, having arisen from cotransmission events. A study of mixed
infections in Malawi using single cell sequencing showed that the highest COI samples arose from
the majority of strains being acquired from cotransmission events and being highly related [21].

Another reason why our predictions may differ from THE REAL McCOIL’s predictions is due
to the way in which the two methods treat the PLAF. In particular, our methods assume that
the PLAF is given as an input whereas THE REAL McCOIL estimates the PLAF concurrently to
estimating the COI. In regions with few samples, our methods may struggle to accurately predict
the COI as the input PLAF may not be representative of the population. THE REAL McCOIL,
however, may be better suited to correctly estimate the COI, given it estimates the PLAF. Although
THE REAL McCOIL may be a better option to estimate the COI in some circumstances, it is a
more computationally intensive estimation method, often taking over a day when analysing 100s
of samples with 1,000 loci. Our methods, on the other hand, can estimate the COI of a sample in
less than 1 second.

To further test the accuracy of our models on sequenced data, we further compared our methods
to the FwS metric [29], a measure of the within-host genetic diversity. We found a strong negative
correlation between our estimated COI using the discrete version of Method 1 and the FwS metric,
as indicated in Figure 10. A similar relationship was found between THE REAL McCOIL and the
FwS metric indicating that our results are on par with the THE REAL McCOIL. These results are
expected as a low FwS reflects a high within-host diversity [29].
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Figure 8. Comparison Between RMCL and Discrete coiaf Across all Regions. We estimated
the COI for 5,970 samples grouped in 24 regions around the world. For each sample, we ran THE REAL
McCOIL 5 times and ran our models 10 times, reporting the median estimated COI. For each region we plot
the discrete estimation of the COI for our models vs the results of THE REAL McCOIL. A boxplot shows
the interquartile range, with whiskers indicating the 95% quantile range and outliers indicated with dots.
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Figure 9. Comparison Between RMCL and Continuous coiaf Across all Regions. We estimated
the COI for 5,970 samples grouped in 24 regions around the world. For each sample, we ran THE REAL
McCOIL 5 times and ran our models 10 times, reporting the median estimated COI. For each region we
plot the continuous estimation of the COI for our models vs the results of THE REAL McCOIL. Point size
indicates density.
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Figure 10. Comparison Between Estimation Methods and FwS. We estimated the COI for 5,970
samples grouped in 24 regions around the world. For each sample, we ran THE REAL McCOIL 5 times
and ran our models 10 times, reporting the median estimated COI. The x-axis indicates the FwS, a measure
of the within-host genetic diversity, where a lower FwS indicates a higher within-host diversity. The y-axis
indicates the estimated COI when using either the discrete version of Method 1 or THE REAL McCOIL.
The color of the points reflects whether the COI was estimated using the discrete version of Method 1 or
THE REAL McCOIL. Note that each band of data corresponds to integer value of the COI—noise in the
y-direction has been added for interpretability.
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7.1 A Case Study: Why Method 2 Exhibits Increased Variance

Among our two methods presented, Method 2 clearly struggles the most. In order to better un-
derstand some of the reasons why Method 2 underperforms, we consider the sample with PLAF
and WSAF as indicated in Figure 11 Panel (a). For this sample, our discrete version of Method
1 predicts a COI of 2 and the THE REAL McCOIL predicts a COI of 1. The discrete version of
Method 2, on the other hand, predicts a COI of 25, the maximum COI our model could return for
this particular sample.

(a) All Data (b) Subset of Data

Figure 11. PLAF vs WSAF of a Sample. The PLAF and WSAF are plotted for a sample. In (a) all
loci are plotted whereas in (b) a subset of data is plotted. In particular, data are first filtered to account for
sequencing error and then only heterozygous loci are plotted.

When this data is provided to Method 2, we first account for any potential sequence error and
then subset our data to only focus on heterozygous data. In this sample, the first difficulty stems
from determining the level of sequencing error. In particular, it is difficult to detect if the large
band of data at a WSAF close to 0 is sequencing error or not. If we assume that this data is
sequencing error and we filter it out, we are left with very few loci to examine. For example, if we
assume a sequencing error of 20%, then only data with a WSAF of greater than 0.2 or less than 0.8
will remain. This makes it difficult to confidently solve our minimization problems and as a result,
our estimate may be incorrect.

On the other hand, if we assume a low level of sequence error, e.g., 1%, then other difficulties in
estimating the COI arise. Assuming a low level of sequencing error after filtering out homozygous
data, we are left with the data pictured in Figure 11 Panel (b). Note that the number of data
points at a low WSAF is substantially higher than the number of data points at a high WSAF.
As a result, when we split our data into bins and find the mean WSAF for each bucket, the mean
WSAF remains low, resulting in Method 2 estimating a very high COI.

In order to deal with noisy data, THE REAL McCOIL infers the sequence error across the
population of samples, specifying the same level of sequencing error for each sample. However, as
the number of noisy samples is low, in assigning the same level of sequencing error to all samples,
THE REAL McCOIL may be inadvertently assigning unreasonably high levels of sequence error
to samples. Our models, on the other hand, infer the sequencing error on a per-sample basis.
Therefore, for some samples that THE REAL McCOIL assigns a high sequence error and we assume
a low level of sequence error, it may very well be that our estimated COI values differ. We believe
that inferring the level of sequence error on a per-sample basis will yield more accurate results.
However, estimating sequencing error is complicated and is itself an active area of research [52] and
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one that we may need to further refine in our analysis in future work.

8 Mapping COI Worldwide

In the next section we present several figures using our novel methods to estimate the COI around
the world. We estimate the COI using the discrete version of Method 1 on the same data used in
Section 7. After determining the COI for each sample, we compute the median and mean COI for
each study location in each region and plot them on a world map. Figure 12 Panel (a) indicates
the median COI in each region and Panel (b) indicates the mean COI in each region. Panel (c)
indicates the aggregate COI, where we plot the COI of each sample in each region.

Our samples were sequenced primarily in Africa with several samples originating from South
East Asia. Examining the median COI of each region, we observe that the COI tends to be higher
in Africa. Interestingly, regions of high median COI tend to cluster together. For instance, there are
several regions on the Eastern coast of Africa where the median COI is 2. However, in some cases
there are also low COI regions next to the higher COI regions. Further examining the prevalence
of malaria in these regions may provide additional insight into malaria dynamics. The mean COI
tends to be higher than the median COI in each region, indicating that the majority of patients
sampled have a low COI, but that there are a few patients with large COI values, which drive the
mean to be large.
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(a) Median COI

(b) Mean COI

(c) Aggregate COI

Figure 12. COI Across the Globe. We estimated the COI for 5,970 samples grouped in 24 regions
around the world. For each sample, we ran our models 10 times and took the median COI. In (a) we plot
the median COI of all samples in each study location within the 24 regions, in (b) we plot the mean COI,
and in (c) we plot the COI of each sample. The color and size of each point represents the magnitude of the
COI.
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9 Conclusion

In this thesis, we described our novel software package coiaf which can be used to predict the
complexity of infection of a sample. We derived two different methods to estimate the COI, one
which identifies the probability that a locus is heterozygous, and the other which identifies the
expected value of the within-sample allele frequency given a site is heterozygous. We analyzed our
methods on simulated data and explored how changing key parameters influenced our predictive
accuracy, concluding that our methods accurately estimate the COI for low COIs, but that as the
COI increased, our methods exhibit more variability. Furthermore, we observed that Method 2
tended to underperform compared to Method 1. We then compared our methods to the current
state-of-the-art method and discovered that for low COIs our methods are comparable. However,
differences arose when the COI was higher than 3. Once again, we observed that Method 2 struggled
to predict the COI, in some instances greatly overestimating the COI. We explored several reasons
for why this might be the case. Lastly, we examined the COI in 24 regions across the world.

Future work can be performed to address some of the limitations of Method 2. In particular,
refining the method we use to infer the sequence error of samples on a per-sample basis may en-
hance performance. Furthermore, as we have suggested, comparing the continuous and the discrete
versions of the optimization problems may provide insight into parasite relatedness. Moreover,
comparing estimates from Method 1 and Method 2 may provide insight into parasite relatedness.
Additionally, we can conduct a more rigorous comparison of our algorithms and THE REAL Mc-
COIL’s comparing computational efficiency, as well as memory usage. Lastly, we can compare our
methods to prevalence data from the regions we sampled.
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Appendices

A Accounting for Sequence Error

During sequencing, error may arise for several reasons. In order to address this error, we allow the
user to choose between two options. The first option is the simplest, and allows the user to have
full control over the level of error assumed. The user may specify the amount of error believed to
be present in their samples. For instance, there may be a 5% sequence error.

The second option does not require any user input. Rather the sequence error is inferred from
the distribution of the data. In particular, we focus on data that has a low PLAF and compare the
number of points with a WSAF greater than zero to the expected number of points with a WSAF
greater than zero. Consider an arbitrary data point (pi, wi). We define a partition over the range
of pi constituent of sets P1, . . . ,PN such that pi ∈ Pm if pi ∈ [am, bm), am < bm, i = 1, . . . , l. In
doing so, we group our data into N bins. We first count the number of loci in the first bin. We
define the PLAF for this partition as indicated by Equation (12).

Given the number of loci in the first partition and the PLAF, we can next compute the expected
number of loci with the minor allele. Recall that sampling the minor allele from a site can be
expressed using a Binomial distribution with 1 trial and probability of success (drawing the minor
allele) equal to the PLAF at that locus. Therefore, to find the expected number of loci with the
minor allele, we can multiply the number of loci with the probability of a locus being the variant
allele. At a PLAF of zero, we expect very few sites to have the minor allele. Therefore, if we
remove the expected number of loci from the true number of loci with a minor allele, all the loci
that remain are likely the result of sequencing error. Therefore, by examining the distribution of
the WSAF of these points, we can estimate the amount of sequence error present in our sample.
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B Clustering Real Data Samples

Figure 13. Silhouette Plot. The x-axis represents the number of clusters the data was split into. The
y-axis indicates the average silhouette score, a measure of cluster validity and strength. The silhouette score
can provide a measure to select the optimal number of clusters [46].

Figure 14. Location of 24 Clusters. Plot of each individual location data was sampled from. The color
of the point indicates which of the 24 clusters data was assigned to.
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C Omitted Figures

(a) Discrete Method (b) Continuous Method

Figure 15. Performance of Method 2 with Changing Coverage. The performance of Method 2
is compared across a COI of 2-20. Data was simulated 100 times with a coverage of 200. No error was
introduced into our simulations and a sequence error of 1% was assumed. In (a), the discrete estimation is
shown and in (b), the continuous estimation is shown. In both cases, the distribution of estimated COI as
the number of loci examined changes from 100 (A) to 1,000 (B) and 10,000 (C) is plotted. In (a), dot plots
are used where point size indicates density. In (b), a boxplot shows the interquartile range, with whiskers
indicating the 95% quantile range and outliers indicated with dots. The mean absolute error is shown in (C)
for both methods, with the 95% quantile computed from 1,000 bootstrap repetitions at each COI indicated
with error bars.
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(a) Discrete Method (b) Continuous Method

Figure 16. Performance of Method 2 with Changing Number of Loci. The performance of
Method 2 is compared across a COI of 2-20. Data was simulated 100 times with a coverage of 200. No error
was introduced into our simulations and a sequence error of 1% was assumed. In (a), the discrete estimation
is shown and in (b), the continuous estimation is shown. In both cases, the distribution of estimated COI
as the number of loci examined changes is plotted. In (a), dot plots are used where point size indicates
density. In (b), a boxplot shows the interquartile range, with whiskers indicating the 95% quantile range
and outliers indicated with dots. The mean absolute error is shown in (C) for both methods, with the 95%
quantile computed from 1,000 bootstrap repetitions at each COI indicated with error bars.
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(a) Discrete Method (b) Continuous Method

Figure 17. Performance of Method 2 with Changing Alpha. The performance of Method 2 is
compared across a COI of 2-20. Data was simulated 100 times from 1,000 loci with a coverage of 200. No
error was introduced into our simulations and a sequence error of 1% was assumed. In (a), the discrete
estimation is shown and in (b), the continuous estimation is shown. In both cases, the distribution of
estimated COI as alpha changes is plotted. In (a), dot plots are used where point size indicates density. In
(b), a boxplot shows the interquartile range, with whiskers indicating the 95% quantile range and outliers
indicated with dots. The mean absolute error is shown in (C) for both methods, with the 95% quantile
computed from 1,000 bootstrap repetitions at each COI indicated with error bars.

(a) Discrete Method (b) Continuous Method

Figure 18. Performance of Method 2 with Changing Sequence Error. The performance of Method
2 is compared across a COI of 2-20. Data was simulated 100 times from 1,000 loci with a coverage of 200. An
error rate of 0.1 was introduced into our simulations, i.e., the probability that a single read is miscalled as
the other allele is 1%. In (a), the discrete estimation is shown and in (b), the continuous estimation is shown.
In both cases, the distribution of estimated COI as the level of sequence error assumed changes is plotted.
In (a), dot plots are used where point size indicates density. In (b), a boxplot shows the interquartile range,
with whiskers indicating the 95% quantile range and outliers indicated with dots. The mean absolute error
is shown in (C) for both methods, with the 95% quantile computed from 1,000 bootstrap repetitions at each
COI indicated with error bars.
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Figure 19. Comparison Between RMCL and coiaf. We estimated the COI for 5,970 samples grouped
in 24 regions around the world. For each sample, we ran THE REAL McCOIL 5 times and ran our models
10 times, reporting the median estimated COI. We plot the discrete and continuous estimations of the COI
for all points, regardless of their region. The color of the point indicates which Method was used and the
size of the point indicates density.
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Figure 20. Comparison Between Estimation Methods and Malaria Prevalence. We estimated
the COI for 5,970 samples grouped in 24 regions around the world. For each sample, we ran THE REAL
McCOIL 5 times and ran our models 10 times, reporting the median estimated COI. The x-axis indicates the
prevalence of malaria, which was obtained from the the Malaria Atlas Project [53–55]. The y-axis indicates
the estimated COI when using either the discrete version of Method 1 or THE REAL McCOIL. The color
of the points reflects whether the COI was estimated using the discrete version of Method 1 or THE REAL
McCOIL. Note that each band of data corresponds to integer value of the COI—noise in the y-direction has
been added for interpretability.
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