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Abstract:
Christianson Syndrome is an X-linked neurodevelopmental disorder caused by mutations 

in SLC9A6. In this study, we present the results of a transcriptome based approach to study a 
Slc9a6 null mouse model of the disease. In particular, pipelines for the analysis of RNA-Seq data
from both mRNA and miRNA are used to identify differentially expressed genes and miRNAs. 
Overall, 107 differentially expressed genes and 9 differentially expressed miRNAs are identified.
Gene set enrichment analyses are performed on the set of 107 differentially expressed genes and 
a set of 940 predicted target genes of the miRNAs. These sets show enrichment for protein 
degradation processes and neuronal processes. Additionally, a number of the miRNAs have been 
shown to affect autophagy and apoptosis. 
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Introduction

Christianson Syndrome (CS) is an X-linked neurodevelopmental disorder first reported in

a large South African pedigree by Christianson et al (Christianson et al., 1999; Murtazina, Booth,

Bullis, Singh, & Fliegel, 2001; Nakamura, Tanaka, Teko, Mitsui, & Kanazawa, 2005). Male 

patients with CS have severe intellectual disability, autism, and epilepsy. They exhibit truncal 

ataxia with an unsteady gait. The majority of patients also have eye movement disorders, sleep 

problems, and history of microcephaly with delayed trajectories of post-natal brain growth 

(Pescosolido et al., 2014). Patients with CS are often first diagnosed with Angelman syndrome 

because of the similar phenotypes. The overlap in phenotypes includes behavioral features such 

as a happy disposition and unprovoked laughter.

Gilfillan et al identified mutations in SLC9A6 as the cause of CS in 2008 (Gilfillan et al., 

2008). SLC9A6 is located on the X chromosome and encodes the protein NHE6. NHE6 is a 

sodium/hydrogen exchanger found on the endosomal membrane. Gilfillan et al identified a 

deletion of six base pairs in SLC9A6 within their pedigree. These bases encode two highly 

conserved amino acid residues in the exchanger domain of NHE6. These bases have been shown 

to be essential for ion transport in NHE1 and NHE8, two proteins highly similar to NHE6 

(Fafournoux, Noel, & Pouyssegur, 1994; Murtazina et al., 2001; Nakamura et al., 2005). In other 

families, Gilfillan et al were able to identify different mutations in SLC9A6 including a 

premature stop codon, a splice-site mutation that would cause the skipping of an exon, and a 

frame shift mutation. Pescosolido et al were able to identify additional SLC9A6 mutations in a 

larger cohort. In particular, they observed 9 SNVs, 2 indels, and 1 CNV deletion. Of these 

mutations, two were splice-site mutations and the other ten were protein truncations. A 
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particularly noteworthy feature of the cohort is that seven of the mutations were de novo 

mutations which contrasted the inherited mutations observed in prior literature. 

Because of the wide range of SLC9A6 mutations observed in CS patients, many of which

are predicted to be loss of function mutations, Slc9a6 null mice are often used to study the 

disorder. In 2011, Strømme et al demonstrated endosomal-lysosomal dysfunction in this model 

system (Stromme et al., 2011). In particular, they found GM2 ganglioside accumulation in the 

late endosomes of mutant mouse neurons. These accumulations are particularly significant 

because they are similar to accumulations observed in lysosomal storage diseases. Lysosomal 

storage diseases are a large group of genetic diseases which effect the lysosomal degradative 

pathway. In particular, two thirds of lysosomal storage diseases affect the brain and neurons. 

Diseases such as Neiman-Pick C and GM2 gangliosidosis cause intellectual disability (Walkley, 

2009).

More recently, Ouyang et al characterized the effect of the loss of NHE6 in mouse 

neurons (Ouyang et al., 2013). In this study, they demonstrated that NHE6 is expressed in 

growing axonal tracts and fiber tracts which include regions of the hippocampus and corpus 

callosum. Using cultured mouse hippocampal neurons, they then demonstrated that NHE6 null 

mice had significantly decreased branching and length in both axons and dendrites. They further 

demonstrated the direct connection to NHE6 by rescuing the arborization deficits with the 

expression of a vector containing human NHE6. Looking at the cellular function of NHE6, 

Ouyang et al demonstrated that the protein loss leads to an over acidification of the endosomes 

and a corresponding decrease in TrkB levels. TrkB is the receptor for BDNF, a signaling protein 

known to play a role in neuronal arborization (Chao & Lee, 2004; Danzer, Crooks, Lo, & 
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McNamara, 2002). Finally, Ouyang et al provided further evidence of the role of BDNF/TrkB 

signaling by rescuing the NHE6 null mice's arborization problems by exogenously administering

BDNF. 

In order to provide a broader molecular understanding of CS and have a larger cellular 

perspective of the disease, we present a transcriptome based approach to study the disease. The 

transcriptome includes the set of all transcribed genes. With the advances in sequencing 

technologies over the last ten years, new methods have been developed that can produce data on 

a whole transcriptome level. In particular, next generation sequencing has enabled scientists to 

sequence all the transcribed RNA in a sample in a technique called RNA-seq (Z. Wang, Gerstein,

& Snyder, 2009). First, RNA is extracted from all samples. Then, the total RNA is converted to 

cDNA with a reverse transcriptase. Once a cDNA library is made, it is sequenced using a next-

generation platform such as the Illumina NextSeq500. Rather than produce long reads like the 

traditional Sanger sequencing, these platforms make much shorter reads that are mapped onto a 

reference genome in order to determine which genes are expressed. By quantifying the number 

of reads that map to each gene, scientists can not only measure which genes are expressed but 

also their relative expression levels. These expression levels are used to identify differentially 

expressed genes from varying experimental conditions. More recently, this technique has been 

adapted to allow for the study of small RNAs like microRNA(miRNA) (Eminaga, 

Christodoulou, Vigneault, Church, & Seidman, 2013).  

miRNAs are a group of small RNAs that are between 21 and 25 base pairs (He & 

Hannon, 2004). They were first reported in C. elegans but have been found in a large range of 

species including both plants and mammals (Chalfie, Horvitz, & Sulston, 1981; He & Hannon, 
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2004). In particular, miRNAs have been reported in both mice and humans (Pasquinelli et al., 

2000). miRNAs have been linked to post-transcriptional gene repression and bind to sites in the 

3' untranslated regions of mRNAs (Chen & Rajewsky, 2007).  The 21-25 base pair mature 

miRNA are derived from longer precursor miRNAs. These precursors form a hairpin RNA loop 

which is bound by a RNase protein like Dicer. This protein cleaves the precursor into two mature

miRNAs with one miRNA from each side of the loop (He & Hannon, 2004). When naming a 

miRNA, the precursor miRNA is assigned a number, and then based on which side of hairpin 

loop the mature miRNA is derived, the miRNA is called either 5p (5 prime) or 3p (3 prime) 

(Ambros et al., 2003). 

In this study, we present the results from using RNA-seq to analyze both mRNA and 

miRNA expression in Nhe6 null mouse brains. Differential gene expression is also determined 

relative to wild-type mice.

Materials

This study used an NHE6 null mouse model with a LacZ-neo cassette inserted into exon 

6 of Slc9a6. This mouse will be referred to as the mutant line. The RNA for sequencing was 

extracted from the hippocampus of post-natal day 19 mice. Five litters of mice were used. The 

litters were labeled A-E. For each litter, one male mutant mouse and a wild-type brother were 

selected. Within each litter, the wild-type was labeled sample 1 and the mutant was labeled 

sample 2. For example, from the first litter, A1 is the wild-type mouse and A2 is the mutant 

mouse. The mRNA-seq and miRNA-seq were performed on Illumina NextSeq500.  The reads 

were 75 base pair single end reads. The raw reads from the sequencing were returned in 

FASTAQ format. A more detailed description of the RNA extraction and sequencing library 
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generation is described in the methods. 

For all analyses performed, the Mus musculus reference genome used was mmu10. This 

was downloaded from UCSC genome browser with the data provided by the Genome Research 

Consortium (Waterston et al., 2002).

All computations were performed using the resources at the Center for Computation and 

Visualization, Brown University. Specifically, they were conducted using 4 cores and 16 

gigabytes of memory. 

Methods

Poly-A Selection and Sequencing Library Generation

Total RNA was processed for library construction according to the following procedure. 

Oligo-dT beads were used to select poly-adenylated RNA (poly-A).  Poly-A selected RNA was 

sheared to appropriate size for cDNA synthesis.  Double-stranded cDNA was end-repaired and a-

tailed to prepare for adapter ligation. Indexed adapters were ligated to sample cDNA, and the 

adapter-ligated cDNA was then size-selected on a 2% SizeSelect™ E-Gel (Invitrogen, Carlsbad, 

CA) and amplified by PCR. Library size and quality was assessed on an Agilent Bioanalyzer and

library yield was quantified by qPCR using the Kapa Biosystems library quantification kit 

(Wilmington, MA) prior to sequencing on the Illumina NextSeq500 (San Diego, CA) as 1x75 

base reads following manufacturer's protocols.

microRNA Extraction

Total RNA was processed for library construction according to the following procedure. 

Briefly, a 3’ adapter was ligated to the RNA molecules. After ligation, a RT primer was 

hybridized to the adapter. The 5’ adapter was then ligated to total RNA, followed by reverse 
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transcription of RNA in a 1st strand synthesis reaction. After 1st strand cDNA synthesis, adapter 

ligated molecules were amplified with adapter specific primers to enrich for the miRNA fraction 

of total RNA. Amplified material was then purified and size selected on a 6% polyacrylamide 

gel. Library quality was assessed by measuring concentration with Qubit (ThermoFisher 

Scientific, Waltham, MA), and average library size was measured using a Bioanalyzer (Agilent 

Technologies, Santa Clara, CA). 

mRNA analysis

To analyze the mRNA data, an approach similar to that taken in Gamsiz et al was used 

(Gamsiz, Ouyang, Schmidt, Nagpal, & Morrow, 2012). The actual pipeline used for analysis in 

this study is outlined in Figure 1. 

Before beginning the actual expression analysis, the quality of the reads was checked 

using FastQC (version 0.11.4) (Andrews, 2010). In particular, the percentage of reads with Phred

quality scores greater than 30 was checked for each sample. Contamination from primer 

sequences was also looked at. 

Following the quality control step, Bowtie2 (version 2.2.5) is used to align the reads to a 

reference genome (Langmead & Salzberg, 2012). Bowtie2 aligns reads in a multi-step process 

which allows for accurate and efficient alignment. First, the reference genome is indexed to 

allow for rapid searching. Once the index is constructed, each read is individually mapped to the 

genome in a two-part alignment. For the first step in the alignment, the reads are mapped in an 

ungapped manner. This initial alignment is used as a seed for the final alignment. With this seed, 

each read is then subjected to a secondary search for gaps. These two steps allow the genome to 

be rapidly mapped with the memory benefits of an indexed system while managing the 
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possibility of gaps. 

Once Bowtie2 produces the alignment of reads, TopHat (version 2.1.0) is run (Trapnell, 

Pachter, & Salzberg, 2009). TopHat is a program that identifies splice-site junctions. It relies 

upon Bowtie2's alignment. It first uses the alignment to identify the exons based on coverage 

from the aligned reads that do not have gaps. When the exons are identified, Tophat searches 

their sequences for splice donor and acceptor sites. Based on these predicted sites, Tophat uses 
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the gapped reads to identify which sites are actually covered by the reads. This coverage can be 

used to determine the novel and known splice sites.

With the reads aligned and the splice-junctions identified, the expression levels of genes 

and isoforms can be measured. Cufflinks (version 2.2.0) is used to estimate the expression levels 

in each individual sample (Trapnell et al., 2010). To measure isoform expression levels, 

Cufflinks takes a set of overlapping fragments and determines fragments which are mutually 

incompatible, meaning they come from different mRNA isoforms. These fragments are used to 

determine the distinct isoforms. With the isoforms determined, Cufflinks estimates their 

expression levels using a linear model to determine the probability that a fragment came from a 

specific isoform. For total gene expression, the relative levels of the isoforms are collapsed 

together and one level of expression per gene is output. 

The alignments are also used in a companion program to Cufflinks called Cuffdiff 

(version 2.2.0) (Trapnell et al., 2013). Cuffdiff determines the genes and isoforms that are 

differentially expressed between multiple sample states. In our samples, we had two groups, the 

wild-type mouse mRNA samples and the mutant mRNA. Rather than simply comparing the total 

number of reads that map to a given gene, Cuffdiff works by modeling the over dispersion of the 

alignment of fragments. A beta negative binomial model determines the levels of gene expression

across the replicates in each state. With this measure for each state, the two states are statistically

tested and corrected for differential gene expression. Cuffdiff reports relative expression level for

every gene in each state, corrected p-values, and the fold-change of each gene. 

Genes with a corrected p-value less than 0.05 were determined to be significantly 

differentially expressed. These significantly differentially expressed genes were analyzed for 
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functional enrichment using two different programs. For both programs, the genes were analyzed

in three groups, all significant genes, all significantly upregulated genes, and all significantly 

down regulated genes. The first program used was DAVID (Database for Annotation, 

Visualization, and Integrated Discovery)'s gene annotation tool (Huang da, Sherman, & 

Lempicki, 2009). This tool uses a modified Fisher's exact-test to determine if the set of genes is 

significantly enriched for a given term compared to the background population. DAVID draws its

functional annotations from a number of databases including KEGG's pathways (Kanehisa, Sato,

Kawashima, Furumichi, & Tanabe, 2016).

The second functional analysis tool used is the PANTHER (protein annotation through 

evolutionary relationship) enrichment test (Mi, Muruganujan, Casagrande, & Thomas, 2013). 

Similar to DAVID, it also compares the given input list to the population to search for 

significantly enriched terms. Instead of using a modified Fisher's T-test, it relies upon a Mann-

Whitney test. The majority of annotations are from the Gene Ontology (GOTerms) database. 

PANTHER protein class annotations are also used. For both of DAVID and PANTHER outputs, 

a p-value or FDR threshold of 0.05 was used to determine significance. 

miRNA

A modified version of the Cap-miRSeq pipeline was used to analyze the miRNA data 

(Sun et al., 2014). This adapted analysis pipeline is outlined in Figure 2. 

Similar to the mRNA analysis, the quality of the reads is initially checked using FastQC. 

Unlike the RNA reads, however, the miRNA raw reads include the Illumina adapter tags used in 

their sequencing. These tags are still included because of the short and variable lengths that occur

10



when sequencing miRNA.

The cutadapt program (version 1.8.3) is used to remove these tags (Martin, 2011). 

Cutadapt aligns the provided adapter sequence to each read and trims the overlapping region. If 
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this region is in the middle of the read as opposed to either the 5' or 3' end, cutadapt discards the 

read. 

After the reads are trimmed, FastQC is once again run to confirm that the adapter 

sequence is no longer present and that the reads have an appropriate distribution around 22 base 

pairs. 22 base pairs is the expected mean of a miRNA library (Sun et al., 2014).

The reads are then input into miRDeep2 (version 2.0.0.5) (Friedlander, Mackowiak, Li, 

Chen, & Rajewsky, 2012). miRDeep2 is a program used to identify both new and already known 

miRNAs. miRDeep2 first uses Bowtie (version 1.1.2) to map the reads to the reference genome 

(Langmead & Salzberg, 2012; Langmead, Trapnell, Pop, & Salzberg, 2009). Bowtie works in a 

very similar manner to Bowtie2 but is considered better for the short reads of miRNA data ((Sun 

et al., 2014). Additionally, Bowtie2's 2-step alignment where an initial seed alignment is used 

before identifying gaps does not make sense when studying miRNAs and their precursors 

because they do not undergo splicing. 

After aligning the reads to the genome, miRDeep2 quantifies the miRNA expression 

using the locations of known miRNAs. In particular, miRDeep2 quantifies the levels of both 

mature miRNAs and precursor miRNA from miRBase. Once the known reads are quantified, 

miRDeep2 also predicts novel miRNAs by identifying high coverage regions that match the 

structure of miRNAs. 

The known miRNAs are identified using miRBase version 21 (Griffiths-Jones, 2004; 

Griffiths-Jones, Grocock, van Dongen, Bateman, & Enright, 2006; Griffiths-Jones, Saini, van 

Dongen, & Enright, 2008; Kozomara & Griffiths-Jones, 2011, 2014). miRBase is a database that 

provides annotated information on miRNAs from over 80 species. For Mus musculus, miRBase 
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v21 has information on 1915 miRNAs.

After expression levels are quantified for each miRNA, EdgeR is used to test for 

differential expression between the wild-type and mutant mouse miRNAs (Robinson, McCarthy, 

& Smyth, 2010). EdgeR is an R package that is part of Bioconductor. EdgeR accounts for the 

variability between samples by using an over-dispersion Poisson model to determine the 

distribution of counts across the miRNAs. With this over-dispersion modeled, it uses an 

empirical Bayes procedure to determine a consensus value for each state. Using these consensus 

values, a modified Fisher's T-test is then used to determine whether there is a statistically 

significant difference between the two states. Using an FDR cutoff of 0.05, a list of significant 

differentially expressed miRNAs is determined.

With these miRNAs identified, predicted targets for each miRNA were identified using 

miRDB (Wong & Wang, 2015). miRDB is an online database that includes predicted gene targets

for a large set of miRNAs from five species including mice and humans. The predictions are 

generated using the mirTarget algorithm which relies on machine learning techniques in order to 

identify target sequences in the 3' UTRs of genes. Based on the author's recommendation that 

genes with scores greater than 80 were highly likely to be actual targets, a cutoff of 80 was used 

in selecting the genes to consider as targets for each miRNA(X. Wang & El Naqa, 2008). 

Once a set of predicted target genes was identified, gene enrichment analysis was 

performed in a similar manner to that taken for the mRNA. In particular, both DAVID and 

PANTHER were used to analyze the set of all predicted gene targets of the differentially 

expressed miRNAs. 
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Results

mRNA

The FastQC quality control check did not report any problems for the mRNA data. In 

particular, no contaminating tags were detected, the distribution of sequence lengths was 

centered on 75, and the majority of reads had phred scores greater than 30. A representative set 

of these graphs is included for sample A1 in Figure 3. Because of the high similarity between 

each of the FastQC results, only the results for A1 are shown. 
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Figure 3: Representative graphs of the results from FastQC for the mRNA fastq file 
taken from sample A1. Note the high concentration of read lengths centered on 75 bp 

and the high proportion of reads with Phred scores greater than 30.



The majority of reads mapped to one locus in the genome with a small percentage aligned

to multiple loci. The results of the alignment are summarized in Table 1.

Using these alignments, Cuffdiff reported 107 genes that were differentially expressed at 

a significant level. Of these genes, 87 of the genes were downregulated and 20 were upregulated.

These results are summarized in Tables 2 and 3. In addition to the p-values, the table also 

includes the fold-change and average FPKM values for the wild-type and mutant. Included in the

downregulated genes was Slc9a6. This result further confirms the mutant mouse model.

Cuffdiff also identified 89 total isoforms of genes that were differentially expressed. Of 

these isoforms, 72 were down regulated and 17 were upregulated. Many of these results were 

isoforms of genes that were also reported in the 107 significant genes already discussed. Because

of this significant overlap, these isoforms are not shown here or further discussed.

After identifying the genes, DAVID and PANTHER were run on the combined set of 107 

genes as well as the set of 87 downregulated genes and 20 upregulated genes. For PANTHER's 

enrichment test, 14 processes were identified for the combined set, 14 processes for the down-

regulated set, and 2 processes for the upregulated set. For the DAVID results, 25 processes were 

identified for the combined set, 28 processes for the down-regulated set, and 2 processes for the 

upregulated set. Selected processes and related information are included in Tables 4, 5, and 6.
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Table 1: Summary of mRNA Alignment

Sample Total Reads Reads Aligned Reads with Multiple Alignments Percentage aligned
A1 66184522 59147564 5994721 0.8936766817
A2 64076289 57390011 6213762 0.8956512915
B1 72003499 64129517 6053677 0.8906444533
B2 68597238 61613192 4934969 0.8981876501
C1 64465291 58057448 5200777 0.9006001074
C2 65050767 58839833 6212492 0.9045217407
D1 65868484 60361604 4725871 0.916395829
D2 70372827 64172217 5047231 0.9118891444
E1 60082666 55119257 3622524 0.9173903335
E2 66234939 60933462 4031545 0.9199595096



Table 2: Significantly Down Regulated Genes

Gene Name q-value(FDR corrected p-value) Wild-type Expression (FPKM) Knockout Expression (FPKM) Fold Change
Defb9 0.00873111 1.84416 0 0
Olfr570 0.00873111 0.571564 0 0
Pon1 0.00873111 0.492252 0 0
Ttr 0.00873111 2453.17 26.6093 0.0108469042
Prr32 0.00873111 7.10328 0.121435 0.0170956234
Slc4a5 0.00873111 1.76552 0.0380048 0.0215261226
Kcne2 0.00873111 5.12479 0.131308 0.0256221231
Aqp1 0.00873111 5.14732 0.207559 0.0403237024
Tmem72 0.00873111 1.53978 0.0662104 0.0429999091
Clic6 0.00873111 6.07037 0.277462 0.0457075928
Mfrp 0.00873111 2.43242 0.159272 0.0654788236
Wfdc2 0.00873111 3.5252 0.253005 0.071770396
Cdh3 0.00873111 0.28471 0.0215898 0.0758308454
Col8a1 0.00873111 2.47165 0.226053 0.0914583375
Slc9a6 0.00873111 24.3532 2.4047 0.0987426704
Cldn2 0.00873111 2.87168 0.287447 0.1000971557
F5 0.00873111 1.24305 0.125615 0.1010538595
Folr1 0.00873111 11.3632 1.1607 0.1021455224
1500015O10Rik 0.00873111 59.147 6.04914 0.1022729809
Otx2 0.00873111 1.99245 0.218956 0.1098928455
Steap1 0.00873111 3.35355 0.590934 0.1762114774
Abca4 0.00873111 0.625264 0.11339 0.1813473989
Wdr86 0.00873111 1.6629 0.310004 0.1864237176
Tc2n 0.00873111 0.213029 0.0486782 0.2285050392
Trpv4 0.00873111 1.4422 0.341759 0.2369706005
Rbm47 0.00873111 0.589584 0.147038 0.2493927922
Pla2g5 0.00873111 1.53002 0.392534 0.2565548163
Krt18 0.00873111 2.15579 0.561016 0.2602368505
Wfikkn2 0.00873111 1.68395 0.475023 0.2820885418
Cox8b 0.00873111 11.3391 3.22794 0.2846733868
Prlr 0.00873111 1.76093 0.528575 0.300168093
Col4a3 0.00873111 0.273585 0.0913488 0.3338954987
Krt8 0.00873111 1.25459 0.424009 0.3379661882
Kl 0.00873111 7.14049 2.49345 0.3491987245
Enpp2 0.00873111 261.426 91.6439 0.3505538852
Crb3 0.00873111 1.09097 0.391731 0.3590667021
Sulf1 0.00873111 4.28951 1.54786 0.3608477425
Scara5 0.00873111 0.598568 0.221106 0.3693916147
Fap 0.00873111 0.59792 0.227249 0.3800658951
S100a9 0.00873111 7.84036 3.14622 0.4012851451
Trpm3 0.00873111 12.7078 5.45565 0.4293150663
Sostdc1 0.00873111 6.3359 2.73133 0.4310879275
Col8a2 0.00873111 3.18895 1.39114 0.4362376331
Igfbp2 0.00873111 70.6672 30.9927 0.4385726334
Slc16a8 0.00873111 1.31587 0.590409 0.4486833806
Oca2 0.00873111 0.980529 0.440996 0.4497531435
St6galnac2 0.00873111 1.70791 0.790046 0.4625805809



Table 2: Continued

Gene Name q-value(FDR corrected p-value) Wild-type Expression (FPKM) Knockout Expression (FPKM) Fold Change
Ppp1r3b 0.00873111 0.572651 0.26505 0.4628473538
Serpinb1b 0.00873111 1.15336 0.537629 0.4661415343
S100a8 0.00873111 8.41305 3.9435 0.4687360707
Sema3b 0.00873111 1.5135 0.717894 0.4743270565
Tuba1c 0.00873111 1.27791 0.638096 0.4993278087
Mdfic 0.00873111 1.47163 0.747738 0.5081019006
Hprt 0.00873111 127.137 66.7769 0.5252357693
Ace 0.00873111 5.20419 2.74333 0.5271387094
Col4a4 0.00873111 0.308909 0.163361 0.5288321156
Epn3 0.00873111 0.994995 0.526672 0.5293212529
Frem1 0.00873111 0.820474 0.435238 0.5304714104
Rdh5 0.00873111 3.82925 2.03212 0.5306835542
Lbp 0.00873111 6.27045 3.36398 0.5364814328
Slc13a4 0.00873111 3.65807 1.99318 0.5448720227
Cd59a 0.00873111 4.7992 2.69777 0.5621291049
Cgnl1 0.00873111 2.06613 1.1774 0.5698576566
Lepr 0.00873111 1.21812 0.696717 0.5719608906
Cldn1 0.00873111 2.63739 1.52488 0.5781776681
Slc16a4 0.00873111 2.47973 1.4609 0.5891367205
Atp11c 0.00873111 2.92949 1.74061 0.5941682682
Pcolce2 0.00873111 2.97307 1.77096 0.595667105
Pcolce 0.00873111 5.44896 3.25164 0.5967450669
Mia 0.00873111 21.7837 13.0622 0.5996318348
Igf2 0.00873111 37.4565 22.4894 0.6004138134
Msx1os 0.00873111 4.40595 2.65501 0.6025964888
Car12 0.00873111 11.5183 6.95366 0.6037054079
Cab39l 0.00873111 12.1899 8.11763 0.6659308116
Erdr1 0.00873111 124.784 90.1315 0.7223001346
Mir124a-1hg 0.00873111 18.0786 13.2699 0.7340114832
Cyp2a5 0.0162021 0.509148 0.11575 0.2273405768
Sfrp5 0.0162021 0.564017 0.162421 0.2879718165
Eps8l2 0.0162021 0.80574 0.346005 0.4294251247
Pon3 0.0162021 2.07807 1.20268 0.5787485503
Drc7 0.0162021 2.00461 1.23986 0.6185043475
Vat1l 0.0162021 13.8293 10.4569 0.7561409471
Slc31a1 0.0162021 12.4639 9.46211 0.7591612577
Slco1a5 0.0377788 0.283657 0.0987089 0.3479868292
Itpripl1 0.0440636 0.906185 0.549616 0.6065163294
Slc37a2 0.0440636 1.02852 0.665212 0.6467662272
Spint2 0.0440636 11.8404 8.49163 0.7171742509



Table 3: Significantly Upregulated Genes

Gene Name q-value(FDR corrected p-value) Wild-type Expression (FPKM) Knockout Expression (FPKM) Fold Change
Oasl2 0.00873111 1.3194 2.57167 1.9491268705
Isg15 0.00873111 3.01847 5.72669 1.8972134483
Ifit3 0.00873111 3.02379 5.44665 1.8012694392

Usp18 0.00873111 1.21586 2.17731 1.7907575195
Cplx3 0.00873111 3.04955 5.25358 1.722737632
Ifit1 0.00873111 1.54852 2.52123 1.6281583288

Nxph3 0.00873111 16.9302 24.6002 1.4530395783
Tmem125 0.00873111 11.9661 16.7294 1.3980655453

Ctgf 0.00873111 6.07622 8.38505 1.3799777443
Gsn 0.00873111 112.269 149.799 1.334288833
Mog 0.00873111 120.491 159.292 1.3220291612

Pdlim2 0.00873111 41.4536 54.7064 1.3197036525
Fa2h 0.00873111 32.5488 42.9253 1.3187983618
Gjc2 0.00873111 18.3144 24.1174 1.3168527199

Adssl1 0.023574 9.36838 12.8614 1.3728499974
Gjb1 0.023574 8.6858 11.7043 1.3475212276

Sox10 0.023574 34.7319 45.0903 1.2982398985
Tmem52 0.0308157 1.82198 3.22739 1.7713655913
Hba-a1 0.0308157 63.4219 84.7613 1.3364677272

Mal 0.0377788 196.956 261.404 1.327216751



miRNA

In the intial run of FastQC, the Illumina Universal adapter tag was detected as expected. 

After running cutadapt, FastQC no longer detected the adapter and the reads passed the quality 
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Table 4: Selected Pathway Analysis Results for Downregulated mRNAs

DAVID Results
Process FDR
Ion Transport 0.000933
Antimicrobial 0.0365

PANTHER Results
Process FDR adjusted p-value
regulation of peptidase activity 0.00992
transmembrane transport 0.0368
regulation of proteolysis 0.0374

Table 5: Selected Pathway Analysis Results for Upregulated mRNAs

DAVID Results
Process FDR
Interferon-induced 56k Protein 0.0278

PANTHER Results
Process FDR adjusted p-value
Defense Response to virus 0.0211

Table 6: Selected Pathway Analysis Results for All Differentially Expressed mRNAs

DAVID Results
Process FDR
ion transport 0.0064
Cell attachment site 0.0137

PANTHER Results
Process FDR adjusted p-value
epithelial cell apoptotic process 0.0358
regulation of peptidase activity 0.00122
regulation of cellular protein metabolic process 0.0456



check with majority of reads having phred scores greater than 30. The number of trimmed reads 

per sample are reported in Table 7. Additionally, Figure 4, includes the graphs from FastQC for 

sample A1. This figure includes the graphs from before and after the trimming. In particular, it 

demonstrates the loss of the adapter sequence and the shift in the length of reads to be center on 

the expected 22 base pairs. Despite these changes, the high quality of the reads is maintained. 

Due to the similarity in results, only those for A1 are shown. 

Having trimmed the reads, miRDeep2 was run. Within miRDeep2, the majority of reads 

successfully aligned. For each sample, a large number of miRNAs were detected with greater 

than 5x coverage. The precise statistics for each sample are provided in Table 7.

Using miRDeep2's data on expression levels, edgeR detected 9 differentially expressed 

miRNAs with an FDR of 0.05 or less. Of these miRNA, 8 were expressed at lower levels in the 

mutant and 1 was expressed at higher levels. Using miRDB, predicted targets for the 9 miRNAs 

were identified. Between all of the miRNAs, a total of 940 genes were identified. These miRNAs

and their fold-changes are shown in Table 8. A complete list of the predicted target genes for 

each miRNA is included in the excel spreadsheet supplementary Table S1.  
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Table 7: Summary of Sample Trimming and Alignment

Sample Total Reads Reads After Trim Reads Aligned Percentage aligned miRNAs detected
A1 10207523 9478408 7296168 0.7697672436 765
A2 7926152 7669221 5967508 0.7781113623 709
B1 10541152 9030058 6508754 0.7207876184 744
B2 10144530 9835439 7538065 0.7664187638 742
C1 10533373 9932475 7292271 0.7341846821 771
C2 10063024 9477082 5541726 0.5847502427 646
D1 10969697 10559078 7985380 0.7562573172 785
D2 10471115 9941941 8295560 0.8344004455 785
E1 9486295 9007172 6711919 0.7451749561 741
E2 10205785 9684134 6781778 0.7002978274 751
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Before Trimming After Trimming

Figure 4: A representative comparison of the FastQC results for the miRNA data before and after the trimming 
of the adapter sequence for sample A1. The top graph shows the Phred Quality Scores which does not 

significantly change as expected.  The middle graphs show the sequence length distribution which shifts from 
almost exclusively 75 to centered on 22, the expected mean of a miRNA library. The bottom graphs show the 

percentage of adapter sequence which in the before is highly contaminated with the Illumina Adapter sequence 
but shifts to no presence after trimming.



It should be noted that two pairs of the predicted mature miRNAs have the same number 

of target genes. For mmu-miR-1264-5p and mmu-miR-34c-3p, this match is simply by chance. 

Their target gene lists are different. For mmu-miR-211-5p and mmu-miR-204-5p, however, the 

predicted lists are the same. The sequences for the two mature miRNAs only differ by one base. 

As a result, when predicting miRNAs, the possibility for imperfect binding leads to the same 

predicted targets (X. Wang & El Naqa, 2008). Despite the similarities in the mature miRNAs, 

their precursor miRNAs are significantly different. This precursor difference explains the 

difference in fold change. The reads that align will not always be the same due to reads which 

overlap the differing precursor sections. These differences are highlighted in Figure 5.  

DAVID and PANTHER were run on the set of 940 genes that resulted from combining 

the lists of predicted genes for each of the differentially expressed miRNAs. DAVID indentified 

24 enriched terms with an FDR of 0.05. PANTHER detected 278 enriched terms with an FDR. 

This large difference can be explained by PANTHER's larger database of terms to search for. 

Selected enriched pathways are reported in Table 9.
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Table 8: Differentially Expressed miRNAs

Gene Name FDR Fold Change Predicted Target Genes
mmu-miR-1298-5p 1.08679E-010 0.059719738 4
mmu-miR-448-3p 1.95083E-008 0.1226571787 159
mmu-miR-204-3p 0.0001663138 0.3144024127 156
mmu-miR-335-3p 0.000915842 2.3046457786 299
mmu-miR-211-5p 0.0078502323 0.4142191885 204
mmu-miR-204-5p 0.0078502323 0.432691189 204
mmu-miR-1264-5p 0.0195547763 0.4657391832 41
mmu-miR-34c-3p 0.0263124376 0.5245821254 41
mmu-miR-1264-3p 0.0430982929 0.4547691266 197
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Table 9: Selected Pathway Analysis Results for miRNA Target Genes

DAVID Results
Process FDR Genes in Set
transcription regulation 9.03724761691649E-010 133
neurogenesis 0.00002375 23
synapse 0.0039439159 24

PANTHER Results
Process FDR adjusted p-value Genes in Set
regulation of primary metabolic process 1.31E-020 401
regulation of gene expression 6.08E-020 269
nervous system development 1.71E-018 169
neuron projection development  7.64E-010 63
neuron differentiation  8.51E-010 85
neuron development 1.57E-009 73
regulation of neurogenesis  0.000048 64
axon development  0.000128 36



Discussion

Our transcriptome based approach to studying CS has resulted in many potentially 

interesting results that could be used to direct future research into CS. However, understanding 

the limitations of this kind of study is important when interpreting these results. First, the RNA 

used for both the mRNA and miRNA were extracted from the hippocampus of the mice. This 

region is an appropriate choice as NHE6 has been shown to be expressed in this brain region 

starting on post-natal day 0 (Ouyang et al., 2013). However, using a hippocampal extract for the 

sequencing means that the RNA comes from a mixture of all the cell types present in this brain 

region. This mixture includes both neurons and glia. These cell types have both been shown to 

express NHE6 but given their different functions, mixing their RNAs may weaken signals unique

to a single cell type and hide potentially valuable insights (Ouyang et al., 2013). Studies have 

increasingly suggested a role for glia in many neurodegenerative diseases including ALS and 

certain tauopathies, so by including this mixture of cell types, understanding the cell types' 

unique roles is not possible(Re et al., 2014; Yoshiyama et al., 2007). Beyond the brain region and

cell types, the experimental design does provide an advantage in that both the mRNA and 

miRNA data comes from the same samples. 

Another potential confound comes from the use of a mouse model. This model system is 

particularly noteworthy when considering the role of miRNAs. While miRNAs are often 

conserved between species, the genes they target may show distinct patterns that differ between 

species although they are usually similar (Roux, Gonzalez-Porta, & Robinson-Rechavi, 2012; X. 

Wang & El Naqa, 2008). This means that while the miRNA results presented here may provide 

potentially valuable insight into CS, they should also be further studied in better model systems 
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such as patient derived induced pluripotent stem cells.

 Despite these limitations, our results still provide some potentially valuable insight in CS.

Starting with the mRNA results, some of the gene set enrichment results provide interesting 

pathways to further investigate. In particular, the two pathways, regulation of peptidase activity 

and regulation of proteolysis, both appear linked to CS because of Slc9a6's role in the 

endosomal/lysosomal degradative pathway. It has been shown that Slc9a6 leads to the 

overacidification of the endosomes (Ouyang et al., 2013). This change in pH's effect is not fully 

understood, but in non-neuronal cells, pH has been shown to be distinct in different parts of the 

endosomal/lysosomal system (Prasad & Rao, 2015; Yap & Winckler, 2012). Genes that were 

reported in these pathways include Ctgf, Aqp1, Pcolce2, Gsn, Serpinb1b, Kcne2, Cd59a, and 

Col4a3. Ctgf has been reported as a down-stream target of mTor which is upregulated in 

autophagy (Bernard et al., 2014). Aqp1 is a water channel, Serpinb1b is a serine peptidase 

inhibitor, and Kcne2 is a potassium gated voltage channel (Pruitt et al., 2014). 

Beyond the pathway analysis for the mRNA, a few other genes stand out. Both Igf2 and 

Igfbp2 are down-regulated. These genes are part of the insulin growth factor signaling process 

(Brouwer-Visser & Huang, 2015).  Igf2 is a peptide that is secreted by most tissues and is known

to increase cell growth (Livingstone, 2013). Igfbp2 encodes insulin-like growth fact binding 

partner 2 which when phosphorylated binds Igf2 and increases its translation (Brouwer-Visser & 

Huang, 2015). This process has been implicated in regulating cell survival, growth, and 

metabolism. In particular, it has been shown to be upregulated in cancers (Brouwer-Visser & 

Huang, 2015). This pathway has also been shown to interact with mTOR and is a compenent in 

the mTOR signaling pathway (Dai et al., 2011). In particular, mTOR phosphorylates Igfbp2 
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(Brouwer-Visser & Huang, 2015). mTOR has been demonstrated to be a key regulator of 

autophagy. mTOR inhibition leads to increased autophagy (Rubinsztein, Codogno, & Levine, 

2012). As members of this signaling pathway, the misregulation of Igf2 and Igfbp2 could have 

significant impacts on the development of the cells and could potentially be involved in cell 

death. Both Igf2 and Igfbp2 are significantly down-regulated in the observed data. This may 

suggest a potential decrease in phosphorylation of Igfbp2 by mTOR as phosphorylation increases

the levels of Igf2. However, this would need to be studied through more direct biological 

experiments. Understanding how CS leads to changes in their mRNA levels may provide greater 

insight into the disease.

The miRNA results also include some interesting results. In particular, miR-35c-3p has 

been studied as a tumor suppressor that can induce apoptosis (Lopez & Alvarez-Salas, 2011). 

miR-204-5p has also been shown to be a tumor suppressor that induces apoptosis in human 

gastric cancers (Sacconi et al., 2012). It also promoted apoptosis in rat Schwann cells (Gao et al.,

2014). In addition to apoptosis, miR-204-5p has also been shown to cause autophagy in human 

renal cancer cells (Hall et al., 2014). Finally, miR-211-5p has also been implicated in apoptosis 

(Chitnis et al., 2012). Unlike the other two miRNAs discussed above, miR-211-5p actually 

inhibits apoptosis. 

By studying the results from both the miRNA and mRNA data, the loss of Slc9a6 seems 

to have a significant effect on cell's degradative pathways and potentially on larger cell death 

processes. These pathways are particularly implicated by the number of differentially expressed 

miRNAs that have been demonstrated to affect apoptosis and autophagy. Additionally, the 

mRNA pathway analysis further supports the link to degradative processes with the enrichment 
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proteins related to proteolysis and peptidase activity, both necessary processes for protein 

degradation. While this enrichment may be expected to some degree because Slc9a6 is an 

endosomal protein, the loss of this specific protein may cause broader changes to the degradative

system. 

The pathway analysis of the predicted target genes for all of the miRNAs also suggests a 

potentially interesting role for miRNAs in CS. In particular, there is a significant enrichment for 

genes related to different aspects of neuronal development including axon development, neuron 

projection development and neurogenesis. Decreased neuronal arborization has been seen in 

Slc9a6 null cultured mouse neurons (Ouyang et al., 2013). While this paper suggests a 

mechanism for the decreased arborization as a result of changes to BDNF/TrkB signalling, 

miRNAs may also play a role in either a compensatory manner or a pathogenic manner. 

Understanding what role miRNAs play in the neuronal problems related to CS may help provide 

insight into the disease's pathogenesis. The large number of predicted target genes may also help 

provide connections to other related diseases and potential shared mechanisms. 

In order to improve these results and remove possible uncertainty, this experiment could 

potentially be reproduced using RNA from patient derived induced pluripotent stem cells 

(iPSCs). Even if these results were confirmed in iPSCs, it would still be important to conduct 

further biological experiments to understand what role these miRNAs are playing. Are they 

pathogenic or are they the cell attempting to respond to the problems caused by the Slc9a6 

mutation? 

Another future direction that is currently being pursued is looking for potential overlap 

between this transcriptome data and proteomics data generated from high-throughput mass-
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spectrometry. This work could also be potentially expanded to include metabolomics data as 

well.

Conclusion

Overall, both the mRNA and miRNA data provide potentially valuable starting points for 

further research into understanding CS. In particular, they serve to highlight the potential 

importance of understanding what role miRNA regulation plays in CS and the potential role of 

cell death in the disease. Both data-sets showed differentially expressed genes or miRNAs that 

were enriched for degradative processes including proteolysis and primary metabolic process. 

Additionally, genes were identified from the RNA data that are part of the insulin-like growth 

factor signaling pathway which is directly tied to mTOR and autophagy. A number of the 

miRNAs have also been demonstrated to regulate autophagy and apoptosis. These results may 

help guide further study of CS. 
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