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ABSTRACT 
Background:​ Gene fusions are genomic alterations which function as diagnostic biomarkers for 
certain cancer types and are thus valuable subjects of research for understanding oncogenesis. 
Given the constant development of new software and sequencing technologies to identify 
genomic variations including fusions, bioinformaticians need guidance to select among the 
available programs. In this study, we conducted a comparative analysis of 8 fusion detection 
algorithms.  
Methods:​ We reviewed primary literature and selected 8 open-source programs developed 
during or after 2014: Arriba​, ​deFuse​, ​FusionCatcher,​ ​FuSeq, InFusion, JAFFA, pizzly, and 
STAR-Fusion. We installed and evaluated those programs for ease of installation, efficient 
performance and accuracy. An existing RNA-seq dataset from patients with multiple tumor types 
was used to test the programs.  
Results​: We found that the evaluated metrics varied widely across programs. JAFFA was both 
the most sensitive and least specific among all programs tested . FuSeq, deFuse and InFusion 
detected the least number of expected fusions, and STAR-Fusion provided the best balance 
between sensitivity, specificity, and efficiency.  
Conclusions:​ This study provides guidance on choosing the optimum fusion detection program 
for certain datasets and/or purposes.  

BACKGROUND 
     Gene fusions occur when two previously independent genes are merged into one or more 
hybrid genes, often as products of somatic mutations such as inversions or translocations​1​. Such 
gene fusions have often been found to be associated with tumor growth, with certain fusions 
recognized as diagnostic or prognostic biomarkers for certain cancer types— as in the case of 
BCR-ABL1​, which is the “Philadelphia chromosome,” a mutant chromosome associated chronic 
myelogenous leukemia​2​.  Thus, gene fusions are important for cancer diagnosis as well as 
research, and the identification of gene fusions is an important step towards understanding 
oncogenesis. Since the advent of large-scale genome sequencing, many programs have been 
developed to analyze genomic data, including dozens of software packages that aim to discover 
potentially gene fusions. Both in clinical and research settings, this software can prove useful in 
discovering candidate fusions associated with disease. However, the available fusion detection 
packages (FDPs) require input files in different formats, utilize different amounts of memory and 
runtime, and perform with different levels of sensitivity and specificity. Given the number and 
lack of uniformity of competing FDPs, usage cases vary depending on the clinical or research 
setting; hence there is a need for a holistic summary and comparison of these programs.  
 



 

     Several studies have attempted to provide such holistic evaluations of multiple FDPs. In 2016, 
Kumar et al. analyzed the performance of 12 FDPs on simulated positive, negative and mixed 
datasets, along with a test dataset comprising RNA-Seq data from human prostate cells​3​. In 2019, 
Haas et al. conducted a similar evaluation on 23 FDPs, using RNA-Seq data from simulated test 
sets as well as stem cell lines​4​. Although these publications serve an important purpose in the 
field of genetic research, there remains a need for a comparative review of FDPs as applied to 
genomic data obtained from patients. In this study, we aim to provide an objective evaluation of 
multiple recent FDPs on human tumor data. We reviewed primary literature on fusion detection 
algorithms and selected 8 open-source programs most recently updated during or after 2014: 
Arriba​5​, ​deFuse​6​, ​FusionCatcher​7​,​ ​FuSeq​8​, InFusion​9​, JAFFA​10​, pizzly​11​, and STAR-Fusion​12​. 
This study reports overall patterns in program performance on a dataset collected from a 
previous RNA-Seq pipeline study​13​, as well as relative accuracy and efficiency and any 
consequent implications for clinical or scientific use.  

RESULTS 
We initially planned to test 15 fusion detection programs for this study. Our original program list 
was later changed, with certain programs excluded because they did not fit the specifications of 
the project, and/or issues with program installation. In addition to the 8 programs in our final list, 
we attempted to test the following software, but due to time constraints and difficulties installing 
and running, were unable to include them in our final list: FusionScan​14​, GeneFuse​15​, GFusion​16​, 
IDP-Fusion​17​, Integrate​18​, PRADA​19​, QueryFuse/FusionQuery​20​. 
 
We found through the installation process that some programs were easier to install and run than 
others, due to the existence of bootstrap methods (FusionCatcher), conda or Docker methods of 
installation (FusionCatcher, STAR-Fusion), and active forums for installation help (Arriba, 
InFusion). Furthermore, output formats varied: some programs produced easily viewable TSV or 
CSV files, whereas others’ output was difficult to parse—for example, pizzly formats its output 
as a JSON file that must be read via JSON editor, where individual genes. Output interpretability 
also relied significantly on program specificity, as sorting through fusions was simpler when 
fewer false positives were reported. 

Positive dataset 

All of the programs we tested detected a majority of the known fusions recorded by Winters et al 
(Table 1, Figure 1). Across all programs tested, JAFFA demonstrated the highest sensitivity, 
detecting 91%, or 22 of the 25 known fusion(s), and deFuse, FuSeq, and InFusion demonstrated 
the lowest sensitivity, detecting 60% of the known fusion(s) (Table 2). Positive predictive value 
was low among all programs, with Infusion achieving an overall maximum precision of 52%, 
and FusionCatcher performing with an overall minimum precision of 32%.  



 

 



 

Figure 1: ​Number of fusions detected per sample by each software package, versus total “known” fusions 
per sample. “Known” fusions were defined as the number of predetermined “known” fusions listed in 
Winters et al, in addition to fusions newly found and validated by Winters et al.  

 
Figure 2:​ In comparison to the findings of Winters et al, number of samples in which known fusions were 
successfully detected by each algorithm. Sensitivity (%) = (True Positives/Total Fusions) 

 
 
 
 
 
 
 



 

Table 2: ​Accuracy metrics— Positive predictive value (PPV)​ ​and sensitivity of each program. 

Program True Pos. False Pos. 
Positive Predictive 
Value (Precision) Sensitivity 

Arriba 20 36 0.36 0.80 

deFuse 15 19 0.44 0.60 

FuSeq 15 21 0.42 0.60 

FusionCatcher 20 42 0.32 0.80 

Infusion 15 14 0.52 0.60 

JAFFA 22 42 0.34 0.88 

pizzly 17  31 0.35 0.68 

STAR-Fusion 20 36 0.36 0.80 

 
Unreported fusion candidates were identified in many positive samples, with unreported fusion 
candidates defined as any fusion candidate with supporting reads greater than or equal to the 
minimum number of supporting reads for a known fusion, using per-program supporting read 
parameters (Methods, Table 4). The initial pool of unreported fusion candidates was filtered 
down to consider only fusions that had been detected by multiple programs and previously 
reported in literature. Such fusions were found in several samples, suggesting the presence of 
heretofore unidentified tumorigenic fusions (Table 3). 
In total, we identified the following unreported fusion candidates, not reported by Winters et al: 
MIPOL1-DGKB​21​, HPR-MRPS10​22​, KANSL1-ARL17A/B​23​, TPM4-KLF2​24​, PAIP2-MATR3​25​, 
FBXO11-MAP2K5​26​, MARS-AVIL​26​, MCMBP-PDCD1​26​, SETD5-NUDT9​26​, DNER-ELL2​27​, 
MROH1-PARP10​27​, MTAP-BNC2​27​, SLC20A2-SFRP1​28​.  

Program efficiency 

Of all programs tested, Pizzly’s runtimes were shortest, and STAR-Fusion used the least 
memory. STAR-Fusion performed well with respect to both average runtime and average 
memory use, with an average runtime only slightly less than that of Pizzly. JAFFA took the 
longest to run, and deFuse consumed the most memory (Figure 3, Table 6).  
 
 
 
 
 
 



 

Figure 3:​ Plot of runtime (hours) versus memory usage (AveRSS, in units of K) for three fusion detection 
programs. As a metric of memory usage, we used the average slurm-reported value AveRSS—which 
denotes the average resident set size of all tasks in a given slurm job—across all samples.  

 
 
Table 6: ​ Runtime and memory usage for the 8 detection programs.  

Program name Avg mem. use (GB) Avg. runtime (hrs) 

Arriba 2.89 0.99 

deFuse 4.26 1.86 

FuSeq 3.53 0.49 

FusionCatcher 2.70 3.09 

InFusion 0.67 5.66 

JAFFA 1.03 8.04 

Pizzly 1.69 0.14 

STAR-Fusion 0.08 0.64 

 
 
 
 



 

Table 3: ​Commonly observed false positive or unreported fusion candidates in the positive dataset. 
Starred fusions have appeared in literature and are possible unreported fusions.  

Sample ID Histological Type Fusion Detected By 
v1-11 Acute myeloid leukemia CHP1-FAM189A1 FusionCatcher, JAFFA, pizzly, STAR-Fusion 
v11-151 Squamous cell carcinoma SENP6-KHDC1 Arriba, FuSeq, JAFFA, STAR-Fusion 
v11-153 Non small cell lung cancer GMEB1-RCC1 Arriba, FuSeq, FusionCatcher, JAFFA, pizzly 

PEX3-AIG1 Arriba, FuSeq, FusionCatcher, InFusion, JAFFA, pizzly, STAR-Fusion 
v12-165 Prostate adenocarcinoma CCSER2-CYP2C19 Arriba, FuSeq, FusionCatcher, InFusion, JAFFA, pizzly, STAR-Fusion 

FAM117B-BMPR2 Arriba, FusionCatcher, InFusion, JAFFA, pizzly, STAR-Fusion 
GPS2-MPP2 Arriba, deFuse, FusionCatcher, JAFFA, pizzly 
MIPOL1-DGKB* Arriba, FuSeq, FusionCatcher, InFusion, JAFFA, pizzly, STAR-Fusion 
MRPS10-HPR* Arriba, FusionCatcher, pizzly, STAR-Fusion 
SNX9-CYP2C19 Arriba, FusionCatcher, JAFFA, STAR-Fusion 

v3-40 B-cell lymphoma ACACB-HVCN1 Arriba, FusionCatcher, JAFFA, STAR-Fusion 
KANSL1-ARL17A* FuSeq, FusionCatcher, JAFFA, pizzly 

v3-42 Acute progranulocytic leukemia KANSL1-ARL17B* deFuse, FusionCatcher, JAFFA, pizzly 
TPM4-KLF2* FuSeq, FusionCatcher, JAFFA, pizzly 

v6-83 Chronic myeloid leukemia BAG6-SLC44A4 Arriba, deFuse, FuSeq, FusionCatcher, JAFFA, pizzly, STAR-Fusion 
C16orf87-ORC6 Arriba, FusionCatcher, JAFFA, STAR-Fusion 
KANSL1-ARL17A* deFuse, FuSeq, FusionCatcher, JAFFA, pizzly 
KIAA1958-HSDL2 Arriba, FusionCatcher, JAFFA, pizzly, STAR-Fusion 

v6-86 Prostate adenocarcinoma TMEFF2-FASTKD2 Arriba, FusionCatcher, JAFFA, STAR-Fusion 
v6-89 Diffuse histiocytic lymphoma HSD17B7-RGS4 Arriba, FusionCatcher, JAFFA, STAR-Fusion 

MEGF8-CNFN Arriba, deFuse, FusionCatcher, JAFFA, STAR-Fusion 
OAZ1-FKBP8 Arriba, FusionCatcher, JAFFA, STAR-Fusion 
PAIP2-MATR3* Arriba, deFuse, InFusion, JAFFA, STAR-Fusion 
PFKFB3-RBM17 Arriba, FusionCatcher, JAFFA, pizzly, STAR-Fusion 
SPOP-MYT1 Arriba, deFuse, FuSeq, FusionCatcher, JAFFA, pizzly, STAR-Fusion 
TOP1-NCOA3 Arriba, FusionCatcher, JAFFA, STAR-Fusion 
VMP1-FLCN deFuse, Arriba, FusionCatcher, InFusion, JAFFA, pizzly, STAR-Fusion 

v7-93 Liposarcoma DAZAP1-AVIL Arriba, deFuse, FuSeq, FusionCatcher, InFusion, JAFFA, STAR-Fusion 
SCAF8-LYZ Arriba, deFuse, FuSeq, FusionCatcher, InFusion, JAFFA, pizzly, STAR-Fusion 
TMBIM4-CYP4F22 FuSeq, FusionCatcher, InFusion, JAFFA 

v8-116 Large cell immunoblastic 
lymphoma 

KANSL1-ARL17A* deFuse, FuSeq, FusionCatcher, JAFFA, pizzly 

v8-117 Rhabdomyosarcoma FBXO11-MAP2K5* FusionCatcher, InFusion, JAFFA, pizzly 
MARS-AVIL* Arriba, deFuse, FuSeq, FusionCatcher, InFusion, JAFFA, pizzly, STAR-Fusion 
MCMBP-PDCD11* Arriba, FuSeq, FusionCatcher, InFusion, STAR-Fusion, deFuse 
RNF219-AKAP11 Arriba, FusionCatcher, JAFFA, STAR-Fusion 
SETD5-NUDT9* Arriba, FusionCatcher, JAFFA, pizzly, STAR-Fusion 

v8-118 Osteosarcoma DNER-ELL2* Arriba, FuSeq, FusionCatcher, JAFFA, pizzly, STAR-Fusion, deFuse 
ELL2-TRIP12 Arriba, FuSeq, FusionCatcher, JAFFA, pizzly, STAR-Fusion 
MROH1-PARP10* Arriba, FusionCatcher, JAFFA, pizzly, STAR-Fusion 
MTAP-BNC2* Arriba, deFuse, FuSeq, FusionCatcher, JAFFA, pizzly, STAR-Fusion 
TFG-GPR128* deFuse, InFusion, JAFFA, pizzly, STAR-Fusion 

v9-124 Colon adenocarcinoma ADAP1-PRKAR1B Arriba, deFuse, FuSeq, FusionCatcher, JAFFA, pizzly, STAR-Fusion 
FZR1-CREB3L3 Arriba, deFuse, InFusion, pizzly, STAR-Fusion 
KANSL1-ARL17A* deFuse, FusionCatcher, JAFFA, pizzly 

v9-125 Bladder transitional cell carcinoma PPIE-ADCY10 Arriba, FuSeq, FusionCatcher, pizzly, STAR-Fusion 
SLC20A2-SFRP1* Arriba, FusionCatcher, JAFFA, STAR-Fusion 



 

Negative dataset 
Table 4: ​Commonly observed false positives in the negative dataset. 

Sample ID Histological Type Fusion Detected By 

v10-144 Breast adenocarcinoma BRIP1-VMP1 InFusion, JAFFA, pizzly, FusionCatcher 
CDYL-CDKAL1 Arriba, InFusion, JAFFA, pizzly, STAR-Fusion, FusionCatcher 
CMTM4-AKR1C4 Arriba, FuSeq, InFusion, JAFFA, pizzly, STAR-Fusion, 

FusionCatcher 
DDX42-PITPNC1 Arriba, FuSeq, InFusion, JAFFA, pizzly, STAR-Fusion, 

FusionCatcher 
EZR-OSTCP1 Arriba, deFuse, JAFFA, STAR-Fusion 
MAP1LC3B-ZNF821 Arriba, FuSeq, InFusion, JAFFA, STAR-Fusion, FusionCatcher 
RAB22A-PHACTR3 Arriba, JAFFA, STAR-Fusion, FusionCatcher 
SUPT4H1-CEP112 Arriba, FuSeq, InFusion, JAFFA, pizzly, STAR-Fusion, 

FusionCatcher 
TANC2-MTMR4 Arriba, FuSeq, InFusion, JAFFA, pizzly, STAR-Fusion, 

FusionCatcher 
TANC2-PSMD12 Arriba, FuSeq, InFusion, JAFFA, STAR-Fusion, FusionCatcher 
TMEM104-CDK12 FuSeq, InFusion, JAFFA, pizzly, FusionCatcher 
TOX3-GNAO1 Arriba, JAFFA, STAR-Fusion, FusionCatcher 

v6-81 Epithelioid sarcoma TRIM24-MET Arriba, FuSeq, InFusion, JAFFA, pizzly, STAR-Fusion 
v9-126 Breast adenocarcinoma CD151-BLVRB InFusion, JAFFA, STAR-Fusion, FusionCatcher 

ESR1-CCDC170 Arriba, deFuse, InFusion, JAFFA, pizzly, STAR-Fusion, 
FusionCatcher 

RNF187-OBSCN Arriba, InFusion, JAFFA, FusionCatcher 
SPAG9-NGFR JAFFA, FusionCatcher, Arriba, InFusion, pizzly, STAR-Fusion 

Control dataset 
Table 5: ​Commonly observed false positives in the control dataset.  
Sample ID Histological Type Fusion Detected By 

v10-133 Normal (thyroid) KANSL1-ARL17A FuSeq, JAFFA, pizzly, FusionCatcher 
KANSL1-ARL17B deFuse, FuSeq, pizzly, FusionCatcher 
TFG-GPR128 deFuse, InFusion, JAFFA, pizzly, STAR-Fusion 

DISCUSSION 
This study analyzes the performance of 8 open-source fusion detection software packages on 
RNA-Seq data from tumor cells with known oncogenic fusions. All programs demonstrated true 
positive detection rates of  >60% among the total fusions demarcated as “known,” demonstrating 
reasonable sensitivity across the board. However, positive predictive value was low among all 
programs, with the highest PPV at only 52%. These sensitivity values fall into a similar range as 
those reported in previous studies, but the PPV results noticeably differ: both Haas et al. and 
Kumar et al. reported PPV values close to 100% for most programs tested​3, 4​. Because both 
previous papers used simulated data or cancer cell line data, we speculate that reduced levels of 



 

noise in their datasets may have incurred fewer false positives than if they had used patient tumor 
cell data. This explanation is supported by multiple program-associated publications that found 
significant discrepancies in program specificity when running on real tumor datasets rather than 
simulated data​11, 12​.  
 
Only FusionCatcher and JAFFA successfully detected the known fusion ​TMPRSS-ERG​ in a 
sample with prostate adenocarcinoma. Similarly, in sample v9-124, only FusionCatcher, JAFFA, 
and STAR-Fusion detected the known fusion ​GRHL2-MAP2K2​, which additionally went 
undetected by Winters et al.​ ​On the other hand, neither Winters et al, nor any of the tested 
programs, was able to detect ​LPP-FOXP1​ in sample v3-40. While the ​FOXP1 ​gene is 
well-documented in B-cell lymphoma​29​, and ​LPP ​fusions have been previously associated with 
tumorigenesis​30​, there exists very little documentation of the ​LPP-FOXP1 ​fusion. This is most 
likely due to the panel used in the sequencing, which might not have captured LPP and FOX1P 
well enough to be detected by the tested programs. 
 
In samples containing more than two known fusions, programs frequently detected only one of 
the two​.​ Furthermore, certain fusions appeared in multiple samples, and failed to be detected by a 
given program in every one of such samples, thereby potentially skewing the reported accuracy 
of that program. For example, InFusion failed to detect ​NPM1-ALK ​in any of the three samples 
that contained this fusion, suggesting that there is some attribute of the fusion for which 
InFusion’s algorithm fails to account. Successful detection of this particular fusion across all 
three samples would heighten the reported sensitivity of InFusion from 60% to 72%. A dataset 
representing a greater variety known fusions would thus provide more a comprehensive 
reflection of program sensitivity.  
 
Additionally, we identified a number of fusion candidates, not reported by Winters et al. Among 
these candidates, ​KANSL1-ARL17A/B ​(detected in multiple samples) and ​MTAP-BNC2 ​(detected 
in the osteosarcoma sample) appeared most frequently in literature. ​KANSL1-ARL17A/B ​results 
from an inversion on chromosome 17 that​ ​fuses ​KANSL1, ​which​ ​codes for a protein involved in 
histone H4 acetylation, and ​ARL17A ​is involved in several carcinogenic pathways. The fusion 
has been found to confer cancer predisposition in individuals with European ancestry, suggesting 
that while these unreported fusion candidates may be germline fusions​23​. Likewise, 
MTAP-BNC2, ​an inversion on chromosome 9​ ​resulting in the fusion of two genes respectively 
encoding a methylthioadenosine phosphorylase and zinc finger protein, has been reported to be 
involved in osteosarcoma carcinogenesis​27​.  
 
In comparing runtime, half of the tested programs completed fusion calls in under 1 hour on 
average, with deFuse, FusionCatcher, InFusion and JAFFA taking longer. Running JAFFA 
consumed significantly more time than any other program—however, this fits with the 



 

observation that JAFFA attained the highest sensitivity among all programs tested. Of all the 
programs, Pizzly ran the fastest, in accordance with the results reported by Pizzly’s developers​11​. 
Memory usage varied widely, with programs like FuSeq and Arriba using 3-4 GB of memory on 
average per run, and others like STAR-Fusion and InFusion using less than 1 GB. It is worth 
noting ​because each program required slightly different amounts of memory and time to run, 
certain parameters in batch scripts— cores, nodes, allocated memory and allocated runtime— 
were specific to the programs being tested (Table 4, Methods). This inconsistency in parameters 
is likely to skew runtime comparisons. As such, for a more accurate comparison, we recommend 
running all the programs again using the same number of cores to evaluate efficiency.  
 
We found that overall, program performance varied depending on the input and the metrics of 
evaluation. Due to this variation, it is necessary to tailor program selection to clinical or research 
use. For example, 60% may not be a sufficiently high sensitivity score for clinical cancer 
detection purposes, as the risks of not detecting an extant fusion are very high. As such, users in 
clinical settings opt for programs with comparatively high sensitivities, such as JAFFA or 
FusionCatcher. However, although JAFFA demonstrated the highest sensitivity among all tested 
programs, it also detected a high number of false positives and exhibited relatively long 
runtimes. For more precise results and a quicker turnaround rate, other programs may be more 
suitable. Of all programs tested, STAR-Fusion and Arriba appeared to have the best balance of 
sensitivity and specificity, each detecting 20 out of the 25 known fusions and achieving PPVs 
that lay the middle of the reported PPV range. Moreover, both programs ran fairly quickly, with 
average runtimes of under an hour. These findings correlate with those of Haas et al​4​. It is worth 
noting, finally, that we ran each program using default parameters. In practice these parameters 
may be adjusted, yielding higher specificities or sensitivities than our findings suggest.  

CONCLUSIONS 
Fusion detection software fills an important role in genomics research and the expansion of 
medical knowledge. This study provides an overview and evaluation of several more recent 
packages, geared towards scientists who may be interested in using them. Among the 8 programs 
tested in this study, we identified JAFFA as the most sensitive option, Pizzly as the fastest, and 
STAR-Fusion as the program providing the best balance across sensitivity, PPV, runtime and 
memory usage. Fusion detection programs continue to be developed; we therefore anticipate that 
other review studies will be needed. We recommend that future studies expand the size of the 
tested dataset, as well as the diversity of fusions and tumor types represented.  

METHODS 
All programs were tested using bash scripts on Brown University Center for Computation and 
Visualization’s Oscar system, using the GRCh37 genome assembly as a reference genome. In all 



 

cases, we used the default parameter settings for each program in our fusion calls, so as to 
maintain consistency across the programs’ performance results. 

Software packages 

Arriba  
v1.1.0 
Program design centered around runtime and sensitivity. Filters for artifacts characteristic of 
gene fusions among fusion candidates generated by the STAR aligner.  
Available from: ​https://github.com/suhrig/arriba 
 
DeFuse  
v0.6.2 
Resolves ambiguous discordant reads using a novel algorithm, uses discordant pairs to analyze 
split reads, then applies an Adaboost classifier to discriminate between false positives and fusion 
candidates.  
Available from: ​https://github.com/amcpherson/defuse 
 
FuSeq  
v1.1.2 
Uses Rapmap’s quasi-mapping to generate mapped reads and split reads, from which fusion gene 
candidates are determined. Applies filtering, statistical tests, and de novo assembly validation to 
produce final candidates.  
Available from: ​https://github.com/nghiavtr/FuSeq  
 
FusionCatcher 
v1.10 
Specifically applied to somatic fusion detection in diseased samples. Aligns reads to 
transcriptome with Ensembl genome annotation and Bowtie aligner, then uses an ensemble of 
four aligners to identify fusion junctions. 
Available from: https://github.com/ndaniel/fusioncatcher 
Note:​ We initially ran FusionCatcher version 1.10, released April 10, 2019. Using this version, 
two samples, SRR6796300 and SRR6796350, failed to complete. We decided to rerun the 
program, but in the time between our initial run of FusionCatcher and our rerun attempt, our 
initial installation had been deleted and the software had been upgraded to version 1.20. Upon 
installing and running v1.20, we found that the program underperformed significantly in 
comparison to v1.10 (sensitivity: 0.44) and failed on 4 samples. Thus we decided to conduct our 
analyses using the v1.10 results, excluding samples SRR6796300 and SRR6796350. Due to time 
constraints, we were unable to re-install v1.10, and as such, certain samples have been excluded 
from the calculations of average runtime and memory.  

https://github.com/suhrig/arriba
https://github.com/amcpherson/defuse
https://github.com/nghiavtr/FuSeq


 

 
InFusion  
v0.8 
Developed for chimeric RNA detection, including but not limited to gene fusions. Performs 
detection and clustering of “split” and “bridge” reads from the Bowtie2 aligner, then filters 
fusion candidates.  
Available from: ​https://bitbucket.org/kokonech/infusion/wiki/Home  
 
JAFFA  
v1.09 
Fusion-detection pipeline consisting of three different modes, variable depending on read length: 
“Direct,” “Assembly,” and “Hybrid.” Each method uses Bowtie to align reads, then maps these 
reads to the transcriptome using a combination of BLAT and Oases.  
Available from: ​https://github.com/Oshlack/JAFFA/wiki  
 
Pizzly  
v0.37.3 
Utilizes kallisto to identify possible fusion junctions through pseudo-aligning reads to the 
reference transcriptome. False positives are then removed through additional filtering.  
Available from: ​https://github.com/pmelsted/pizzly  
 
STAR-Fusion  
v1.8.1 
Identifies chimeric junctions using split reads from the STAR-aligner, validates these junctions 
by counting supporting junction reads and spanning fragments, and utilizes a series of filters to 
narrow down candidate genes.  
Available from: ​https://github.com/STAR-Fusion/STAR-Fusion/wiki  

Datasets 

The 30 total samples utilized in this project were taken from a 2018 study conducted by Winters 
et al, in which an RNA sequencing assay of human tissue samples was collected for the 
validation of a fusion detection pipeline​14​. Our dataset was compiled in an attempt to be as 
diverse as possible with regard to tissue and known fusion type. Each sample was obtained in the 
format of an SRA file from the NCBI Sequence Read Archive and converted into the appropriate 
input format for the given programs (FASTQ, FASTQ.gz, FASTA, etc). We considered pairs of 
reciprocal fusions (e.g. PML-RARA and RARA-PML) to be one fusion. We followed the 
definition of a “known fusion” given by Winters et al.: that is, one of 571 reportable genes 
previously described in fusions or with verified oncogenic potential​14​. All such known fusions 
were verified by Winters et al using other methods such as RT-PCR. 

https://bitbucket.org/kokonech/infusion/wiki/Home
https://github.com/Oshlack/JAFFA/wiki
https://github.com/pmelsted/pizzly
https://github.com/STAR-Fusion/STAR-Fusion/wiki


 

 
Positive dataset 
Table 1:​ List of positive tumor samples tested, along with histological type, previously known and newly 
detected fusions discovered in each sample. We considered “positive samples” samples that contain either 
fusion(s) known prior to the Winters et al. study, and/or fusion(s) detected and validated by Winters et al. 
As such, sample v7-93 is considered a positive sample. Note that BRD4-C15orf55 is recognized by some 
fusion detection algorithms as BRD5-NUTM1. 
Sample Number Histological Type Known Fusions Detected by Winters et al SRA ID 

v1-11 Acute myeloid leukemia RUNX1-RUNX1T1 RUNX1-RUNX1T1 SRR6796292 

v11-151 Squamous cell carcinoma BRD4-C15orf55 
BRD4-C15orf55 
GTF2IRD1-CLIP2 SRR6796300 

v11-153 Non small cell lung cancer SLC34A2-ROS1 SLC34A2-ROS1 SRR6796304 

v12-161 chondrosarcoma EWSR1-NR4A3 HEY1-NCOA2 SRR6796318 

v12-165 Prostate adenocarcinoma RERE-PIK3CD RERE-PIK3CD SRR6796326 

v1-26 
Acute progranulocytic 
leukemia PML-RARA PML-RARA SRR6796328 

v3-40 B-cell lymphoma LPP-FOXP1 None SRR6796332 

v3-42 
Acute progranulocytic 
leukemia PML-RARA PML-RARA SRR6796334 

v3-65 
Anaplastic large T-cell 
lymphoma NPM1-ALK NPM1-ALK SRR6796340 

v6-83 Chronic myeloid leukemia 
BCR-ABL1, 
NUP214-XKR3 

BCR-ABL1, 
NUP214-XKR3 SRR6796352 

v6-84 Cholangiocarcinoma 
NUP214-XKR3, 
FGFR2-BICC1,  

NUP214-XKR3, 
FGFR2-BICC1,  SRR6796354 

v6-86 Prostate adenocarcinoma TMPRSS2-ERG TMPRSS2-ERG SRR6796356 

v6-89 
Diffuse histiocytic 
lymphoma NPM1-ALK NPM1-ALK SRR6796358 

v7-93 Liposarcoma None MDM2-TMPO SRR6796360 

v8-116 
Large cell immunoblastic 
lymphoma NPM1-ALK NPM1-ALK SRR6796374 

v8-117 Rhabdomyosarcoma PAX3-FOXO1 PAX3-FOXO1 SRR6796376 

v8-118 Osteosarcoma TP53-VAV1 TP53-VAV1 SRR6796378 

v9-123 Synovial sarcoma SS18-SSX1 
SS18-SSX1, 
PIEZO1-CBFA2T3 SRR6796380 

v9-124 Colon adenocarcinoma GRHL2-MAP2K2 None SRR6796382 

v9-125 
Bladder transitional cell 
carcinoma FGFR3-TACC3 FGFR3-TACC3 SRR6796384 

 

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796300
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796304
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796318
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796326
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796332
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796334
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796340
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796352
https://www.ncbi.nlm.nih.gov/sra/SRX3755300[accn]
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796356
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796358
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796360
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796376
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796378
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796380
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796382


 

Negative dataset 
Table 2:​ List of negative samples tested. We define a negative sample as a tumor sample containing no 
known tumorigenic fusions.  
Sample Number Histological Type Known Fusions Detected by Winters et al SRA ID 

v10-144 Breast adenocarcinoma None None SRR6796290 

v6-80 Brain tumor, NOS None None SRR6796348 

v6-81 Epithelioid sarcoma None None SRR6796350 

v8-113 Lipoblastoma None None SRR6796372 

v9-126 Breast adenocarcinoma None None SRR6796386 

 
Control dataset 
Table 3: ​List of control samples tested. We define a control sample as a sample of normal tissue 
containing no known tumorigenic fusions.  

Sample Number Histological Type Known Fusions Detected by Winters et al SRA ID 

v10-133 Normal (thyroid) None None SRR6796280 

v10-135 Normal (retroperitoneum) None None SRR6796282 

v10-136 Normal (brain) None None SRR6796284 

v12-158 Normal (prostate) None None SRR6796312 

v3-58 Normal (lung) None None SRR6796338 

Analysis of program performance 

To gauge the sensitivity of each program, we used the typical calculation for sensitivity: 
 
Sensitivity​ = True Positives/True Positives + False Negatives, 
 
Where a true positive was defined as any “known” fusion validated by Winters et al, including 
both pre-existing known fusions as well as new fusions discovered the Winters et al study, and a 
false negative was defined as any such “known” fusion that failed to be detected by the program 
in question.  
 
To gauge the specificity of each program, we followed the method utilized by Kumar et al, using 
positive predictive value or precision rather than calculating specificity exactly: 
 
Positive predictive value (PPV)​  = True Positives/True Positives + False Positives, 
 

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796290
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796348
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796350
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796372
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796386
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796280
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796282
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796284
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796312
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR6796338


 

Where a true positive was defined as any “known” fusion validated by Winters et al, and a false 
positive was defined as any additional fusion reported by the given program that met the criteria 
of a “common false positive” (Table 3). This definition of false positive was employed in order 
to filter out artifacts from program output, reducing the set of false positives to those that had 
demonstrated reproducibility. We used PPV rather than the standard specificity calculation, due 
to difficulty defining and quantifying “true negatives.”  
 
As a metric of memory usage, we used the average slurm-reported value AveRSS—which 
denotes the average resident set size of all tasks in a given slurm job—across all samples 
(positive, negative control, and normal) for each program. To measure runtime, we used the 
average duration of the slurm job across all samples. ​Note that because each program required 
slightly different amounts of memory and time to run, certain parameters in batch scripts— 
cores, nodes, allocated memory and allocated runtime— were specific to the programs being 
tested. A list of the batch script parameters is provided below.  
 
Table 4: ​Batch script parameters by program.  

Program name Cores Nodes Runtime (hrs) Memory per node (GB) 

Arriba 2 1 9 50 

deFuse 8 1 19 60 

FuSeq 1 4 9 20 

FusionCatcher 4 1 48 60 

InFusion 2 1 19 50 

JAFFA 5 1 28 50 

Pizzly 8 1 3 60 

STAR-Fusion 5 1 9 100 

Identifying Common False Positives and Unreported Fusions 

To identify unreported fusions, we first calculated the minimum number of supporting reads for 
any known fusions, per program (Table 5). “Supporting reads” are metrics specific to each 
program; for example, Arriba catalogues the “discordant mates,” “split_reads1,” and 
“split_reads2” that support a given candidate fusion, whereas JAFFA reports “spanning reads” 
and “spanning pairs.” We then filtered each program to only fusions whose supporting reads 
were greater than or equal to the minimum number. We pooled the findings of all programs, and 
conducted a literature search of all unknown fusions that were detected by four or more 
programs in the same sample. Fusions that had been documented in at least one fusion database 



 

or scientific article were considered possible unreported fusions. Fusions that had not been 
recorded in one of the aforementioned methods were considered false positives.  
 
Table 5: ​Minimum read count criteria for identification of false positives and unreported fusions. 

Program Criteria 

Arriba Discordant mates: 1 

deFuse Split count: 23 
Span count: 6 

FuSeq Supporting reads: 9 

FusionCatcher Spanning unique reads: 2 
Spanning pairs: 1 

InFusion Split reads: 8 
Paired reads: 0 

JAFFA Spanning reads: 1 

pizzly Pair count: 6 

STAR-Fusion Junction read count: 2 
Spanning fragments: 1 
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SUPPLEMENTARY MATERIAL 
For a full list of false positives with ​≥​3 supporting programs, see this file: ​<All Unreported Fusions 
Candidates​> 
Program run results, analysis scripts, and more detailed documentation of methodology available upon 
request.  
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