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Abstract

Genomic data contains extremely sensitive information about an individual, and its compromise or
disclosure can have disastrous implications. However, in spite of these obvious risks, the current
security practices employed to secure such data often fall woefully short.

This thesis aims to survey the current state of genomic privacy. It covers some of the challenges
facing genomic privacy, including current threats and demonstrated attacks. It presents and reviews
potential technical, cryptographic and policy solutions that may help guarantee the privacy and
security of genomic data.
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Chapter 1

Introduction

We live in the age of big data, with exabytes of it being generated and consumed every day by
billions across the world. And yet, despite its abundance, we often neglect to secure data properly.
While much data can be insignificant, and its security not vital, there are many types of data that
must be secured in order to protect the rights and safety of the individuals they relate to.

One such form of data is genomic data. By its very nature, genomic data contains extremely
sensitive information about an individual - it can hold the key to a person’s predisposition to dis-
eases, their likely response to different treatments, and even aspects of their identity, such as their
ethnicity and relatives. Compromise of these data can subject their owner to social embarrassment,
discrimination, or even targeted threats to their physical security. Worse still, the leakage of data
on one individual simultaneously exposes data on all their kin with whom they shares genetic sim-
ilarities [10]. Furthermore, in addition to the immediate risks to individuals from the accidental or
malicious disclosure of their genomic data, such loss of privacy undermines public confidence and
the willingness to share genomic data for research.

Current security practices, such as anonymization, often fall woefully short. For example, it has
been shown that it is possible to uniquely identify an individual within a genome wide association
study[9, 2], completely circumventing current security measures in place. The problem is made
even harder by the fact that a genome itself is a unique identifier - it takes just 80 single nucleotide
polymorphisms (SNPs) to uniquely identify one individual[13].

Therefore, it is not sufficient to simply remove personal identifiers - we must further restrict
access to unencrypted (plaintext) genomic data. Such restriction on plaintext access must be bal-
anced against the need to conduct search and other computations on genomic data (for research,
medical or forensic purposes). Therefore, if we encrypt such data, we are restricted in our choice
of encryption schemes, as the schemes used must support search and computation on encrypted
data. Currently, the most promising approaches in genomic privacy use a combination of aggre-
gated or obfuscated release techniques, such as differential privacy[5, 17, 7] or summary statistics,
and privacy-enhancing cryptographic techniques, including homomorphic encryption, secure multi-
party computation [11], and functional encryption [1]. However, some of these approaches have
large computational or storage overheads, forcing us to make tradeoffs between security and effi-
ciency.

This thesis aims to survey the current state of genomic privacy. It will review the work of leading
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researchers in genomic privacy, with a focus on security vulnerabilities identified by them and their
suggested solutions. It will evaluate and compare existing cryptographic methods employed in
genomic privacy, and consider how cryptographic techniques developed and used for other privacy-
preserving applications could be applied to genomic data. Finally, it will include projections for
the future of genomic privacy, in terms of both technologies and their likelihood of adoption.
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Chapter 2

Background

The advent of cheaper genome sequence technology has allowed for tremendous progress in ge-
nomics. Since the sequencing of the first full human genome, a $300 million dollar venture at the
turn of the millenium, the cost of genome sequencing has plummeted faster than even Moore’s Law
would have predicted. Today, the cost of sequencing a full human genome is a hundred thousand
times less, with sequencing companies able to sequence an individual’s genome for around $1000
(see Figure 2.1).

Figure 2.1: Cost of Genome Sequencing (Source: NIH National Human Genomic Research Insti-
tute)

The rapidly declining cost of genome sequencing has given rise to the age of genomic data. The
past decade has seen nations, organizations and even individuals embark on ambitious initiatives
to sequence large numbers of genomes, in an effort to better map, study and understand hered-
ity and health. Two examples of this are the All Of Us Research Program1, which aims to collect
health and genetic data from one million American citizens, and Genomics England2, a government
project launched to sequence the genomes of 100,000 patients in British hospitals who are suffering
from rare diseases or cancer.

Such initiatives have not only allowed us to collect vast amounts of genomic data, but also
furthered the technologies we use to collect such data, resulting in more, higher quality sequence
information. These vast banks of genomic information are primarily used for research purposes,

1https://allofus.nih.gov
2https://www.genomicsengland.co.uk
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with the main goal often being advances in healthcare. Large biorepositories are used to draw in-
sights into and further our understanding of the features and patterns of the human genome. The
arrival of these large genomic datasets has also prompted the need for efficient and effective data
sharing techniques. Partially driven by this need, the Global Alliance for Genomics and Health
(GA4GH) was set up in 2013 to streamline the sharing of such data between organizations through
the development of tools such as the Beacon Project3 (which allows researchers to search if a certain
allele exists in a dataset) and the Matchmaker Exchange4 (for rare disease discovery).

In addition to government initiatives, we have also seen a flurry of activity in genomics in
the private sector. These companies specialize in sequencing machines (e.g. Illumina or Oxford
Nanopore), the storage, processing and analysis of genomic data (e.g. Google Genomics) and
direct-to-consumer genetic testing (e.g. 23andMe and AncestryDNA)[3].

However, there are new dangers brought about by the rise of genomics. The widespread avail-
ability of such data exposes us to previously unseen ethical, security and privacy threats, many
of which we have failed to address. The difficulty of anonymizing data renders many traditional
sanitization techniques obsolete. Genomic data contains a plethora of information beyond just the
sequence - an individual’s data reveals much about their traits, heritage and disease predisposi-
tions. Furthermore, the risk of exposure of such data does not affect just the individual it was
collected from - it contains significant information on the relatives, ancestors and descendants of
the individual. As a result, the lifetime of genomic data is unlike almost any other - its lifespan is
that of the individual who provided it, and to some extent, the lifetimes of all their relatives and
descendants.

While many threats to genomic privacy remain theoretical, some attacks have been carried out
in practice. One such attack was demonstrated by Homer et al. [9], who showed that it was possible
to determine whether a specific individual was part of a case study group, simply by comparing
the target’s genome (or in many cases, a fragment of their genome) to the aggregate statistics of
a reference population (available publicly) and that of the case study. The implications of such an
attack were so drastic that it caused the Wellcome Trust and the NIH, who supplied the dataset
used by Homer et al., to withdraw the dataset entirely.

Homer’s attack was just the beginning. Since that attack, the scale of the genomic data we
collect and store has grown exponentially, exposing us to new potential threats and attacks. In the
next section, we will describe the most significant attacks on genomic privacy.

To counter these threats, we have to secure and protect genomic data better. A trivial solution
would be to take all publicly available genomic datasets offline, thus restricting their access to au-
thorized users only. However, such an action would stifle global collaboration and greatly hamper
genomics research. Therefore, we must focus on other strategies that can grant us some measure
of security while maintaining access. In Chapter 3, we outline some of the core goals of genomic
privacy, and some of the requirements that guide the techniques and mechanisms we employ.

The most basic of these strategies use anonymization and encryption, thus removing or hiding
identifiers that exist in genomic datasets. Such techniques are largely effective, but remain prone

3https://beacon-network.org/
4http://www.matchmakerexchange.org

5

https://beacon-network.org/
http://www.matchmakerexchange.org


to inference attacks, such as the ones demonstrated by Homer et al. [9] and Gymrek et. al [8]. We
will study these attacks in greater detail in Chapter 4, and look at other attack mechanisms that
have been used on genomic datasets.

Another technical solution would be to employ obfuscated or aggregated release techniques,
such as the use of summary statistics or differential privacy. Such techniques would still allow for
genomic datasets to be made available to the public, but would limit the precision of the insights
that can be gained from the data. We will explore these techniques in Chapter 5.

The final technical solution would be to modify traditional cryptographic techniques to work
with genomic datasets. Such techniques build secure frameworks for semi-trusted parties to inter-
act with and share encrypted data. In Chapter 5, we will briefly cover three of these techniques -
homomorphic encryption, multi-party computation, and functional encryption - and address their
suitability for genomic data.

We must also consider non-technical solutions. This will largely consist of strengthening and
expanding current legislation, regulation and best practices regarding the collection, storage and
distribution of genomic data. Non-technical solutions will be briefly discussed towards the end of
Chapter 5. In addition, we must strive to improve, through education, the public awareness of the
risks facing genomic data, and emphasize the importance of future work in genomic privacy.

Finally, we also consider the future development of genomic privacy. In Chapter 6, we will
include projections for the future of genomic privacy, balancing the need for such privacy with the
public good arising from the sharing of genomic data.
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Chapter 3

Desiderata of Genomic Privacy

As we search for a solution to the problems facing genomic privacy, it is important to define what
properties a viable solution should have. Here, I outline some of the desired properties for any
system that is designed for genomic privacy.

1. Many of the proposed technical approaches are thought to be viable simply because they work
in polynomial time and/or space (in the size of the input). However, this does not take into
account the scale of genomic data. Genomic datasets often contain thousands of individuals’
data, and each datum can be millions of letters long - being polynomial in the size of this input
can make a scheme still too slow or computationally expensive to be practical. Therefore, we
must constrain feasible solutions not just in time and space complexity, but also bound the
runtimes and memory/space requirements, to create practical and scalable tools.

2. As we will see in Chapter 5, many of the proposed schemes are very restrictive in what
interactions they allow between researchers and the data they work with. Most only allow
for a handful of queries to be performed, place restrictions on types or amount of data that
may be accessed, and place limits on the types of results that may be returned. While such
restrictions are essential in order to provide security guarantees, they are impractical for
genomics research. In practice, the workflow of a genomics researcher is rarely so restricted -
thoroughly investigating and understanding a genomic dataset often involves a wide range of
queries on various subsets of the data, and requires flexible combination of different queries.
Therefore, when developing mechanisms for genomic privacy, we should aim to place as few
restrictions as possible on the ways in which scientists interact with genomic data.

3. Genomic data has a far longer lifespan than most forms of data - its immediate sensitivity
is bounded by the lifetime of the individual it is collected from, and more loosely, by the
lifetimes of their relatives and descendants. Genomic data is also truly immutable, meaning
it must be compromised just once for it to be forever revealed (unlike passwords or security
data that can be reset upon revelation). As a result, the schemes used to protect such data
must match its longevity, and must be designed to withstand a lifetime of attacks.

4. In the case of genomic data, full disclosure is not the only risk. We must also secure it against
partial disclosure, since even small sections of an individual’s genomic information can contain
very sensitive information. Therefore, the schemes we develop and deploy must totally secure
genomic data, and prevent any form of disclosure.

5. It is tempting to rely completely on cryptographic techniques, and the theoretical security
guarantees they provide, to protect genomic data. However, there are inherent dangers in
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doing so. Cryptography is a flawed art, and systems are secure only for as long as a bug is
not found in them - the systems that we consider to be secure are only really secure to the
best of our knowledge.

Historically, cryptosystems that were thought to have been provably secure have rarely stood
the test of time. Therefore, we cannot blindly place our trust in “proven” cryptographic
systems - such systems are only secure against current adversaries, and given the current
state of knowledge. They make no claim about their security against cryptographic advances
or adversaries in the future, and it is not inconceivable to see many of these secure systems
being broken in the near future1.

Therefore, we must employ a combination of cryptographic and non-cryptographic techniques
when securing our data, so that the systems we design do not fail as spectacularly when there
are advances in cryptanalysis.

6. Finally, we must review how we approach consent in genomic privacy. Currently, a very
opaque, static approach to consent is employed - participants consent to their data being
included in a genomic dataset, and short of a data breach that may affect their data, they
are never contacted again. In many cases, participants are poorly informed of the risks of
participating in such scientific studies, the privacy-preserving mechanisms (if any) that are
in place, or the availability of their data.

Such systems must be replaced with more transparent, dynamic consent systems with in-
creased participant involvement, and more granular researcher-participant interactions. Par-
ticipants should have a say in which aspects of their data are shared, how much privacy they
wish to have, how long their data may be used for, and whether they wish to continue to
participate in the study or not.

1For example, if it is shown that P = NP , the vast majority of modern cryptography will become vulnerable.
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Chapter 4

Past Attacks on Genomic Data

Brief Overview of Attack Mechanisms

We begin with an overview of the general types of attacks on genomic data. Attacks on genomic
privacy tend to fall into three main categories1:

• Identity Tracing: Identity tracing attacks attempt to uniquely identify an anonymous
DNA sample using quasi-identifiers from the dataset. Success is measured as the information
obtained by the adversary relative to the size of the population the data is drawn from.

Identity tracing attacks largely take the following forms [6]:

Exploiting meta-data : Genomic datasets are often published with additional metadata
(demographic details, criteria to participate in the study, additional health information,
etc.), which can be exploited to trace the identity of an unknown genome in the sample.
Demographic metadata is an especially potent source of identifying information; esti-
mates suggest that the combination of date of birth, sex, and 5-digit zip code uniquely
identifies more than 60% of US individuals[18]2.

Genealogical triangulation : The development of impressive online platforms to search
for genetic matches, made for a worldwide community who wish to understand their
genealogy, has made genealogical triangulation a viable attack for identity tracers. An
example of this attack is the surname-inference attack demonstrated by Gymrek et al.
[8], where the attackers exploit the Y chromosome–surname correlation.

Phenotypic Prediction : A little more far-fetched and a little less practical, it has been
envisioned that the prediction of phenotypes from genetic data could be used as quasi-
identifiers for tracing[14].

Side-channel Leaks : Such attacks exploit unintentionally coded quasi-identifiers in datasets,
instead of targeting the actual data that is made public. These attacks exploit factors
such as filenames, numbering, hash values, and other basic computer security vulnera-
bilities, to discover further information about participants in a genomic dataset3.

1In this thesis, we will focus on techniques that use data mining or the combination of distinct resources to learn
private genomic information, and not basic computer security vulnerabilities.

2Using this approach, Sweeney [18] successfully identified the medical condition of William Weld, former governor
of Massachusetts, using only his demographic data (date of birth, gender, and 5-digit ZIP code) appearing in the
hospital records and in voter registration forms that are available to everyone.

3Sweeney et al. [19] discovered that the uncompressed files from the Personal Genome Project (PGP) have
filenames that contain the actual name of the study participant.
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• Attribute Disclosure Attacks via DNA (ADAD): ADAD attacks harness genetic mark-
ers or characteristics to identify individuals and disclose further information about them.
Some techniques include:

n=1 scenario : The most basic scenario is one where the sensitive attribute in the dataset
is associated with the genotype data of the individual. In this case, the adversary can
simply match the genotype data that is associated with the identity of the individual
and the genotype data that is associated with the attribute [6]. Such an attack requires
a small number of SNPs to perform with high accuracy, thus making GWAS highly
vulnerable.

Summary Statistics : Such an attack might work as follows. Consider an extremely rare
variation in the subject’s genome - a non-zero allele frequency of this variation in a
small study increases the likelihood that the target was part of the study, whereas a zero
allele frequency strongly reduces this likelihood. An example of this exact attack was
demonstrated by Homer et al. [9].

Gene Expression : The crux of such an attack is to learn loci in gene expression profiles
that are the most probable markers of a given genotype. Once such markers are learned,
they can be used to compare anonymized gene expression datasets (such as the NIH’s
Gene Expression Omnibus (GEO)) to medical data with patient information.

• Completion Attacks: Completion of genetic information from partial data (genomic im-
putation) is a common problem, and, using a combination of linkage disequilibrium between
markers and reference panels with complete genetic information, can be used to recreate
missing genotypic values. This same approach can be used to “fill in the blanks” in sanitized
datasets, where only partial DNA information is made available.

Completion attacks use imputation to learn more information about targets and their rela-
tives. This can be done through further analysis of the available genetic information (and
harnessing linkage disequilibrium vis-a-vis reference panels to patch the gaps), extrapolating
existing genomic information to infer the genotypes of relatives (who may or may not appear
in the partially sanitized dataset), or using the available genomic information of relatives to
infer information about an individual (thus completing the missing data).

Homer, 2008: Resolving Target Membership in a Complex Mixture

The first major attack on genomic data was demonstrated by Homer et al. in 2008 [9]. Resolving
whether an individual’s genomic DNA is present in trace amounts within a complex mixture (one
containing DNA from many individuals) is of interest in many fields. However, before Homer’s
paper, identifying individuals who contribute less than 10% of a mixture was difficult and inaccu-
rate, with the best available techniques relying on Short Tandem Repeats (STRs) or Mitochondrial
DNA (mtDNA). The approach presented by Homer et al. is able to identify trace amounts (< 1%)
of DNA from an individual contributor within a complex mixture.

The attack uses the hundreds of thousands of SNPs on a high-density microarray (Affymetrix or
Illumina) as a means to resolve trace contributions of DNA to a complex mixture. This technique
can then be used to determine whether a specific individual was part of a case study group, simply
by comparing the target’s genome to the aggregate statistics of a reference population and of the
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case study. To do this, the allele probe intensities of the target individual are measured (using ratio
of intensity measures from common biallelic SNPs), and compared to the intensities of the same
alleles in the case study and the reference population. The idea here is that the unique combina-
tion of SNPs possessed by the target will be more similar to one of these groups, thus allowing the
experimenters to make a prediction about the target’s presence in or absence from in the case study.

The setup is as follows. The attacker knows of a case study group, and a reference population
4 (the control group), and is attempting to determine if a target individual (whose partial or whole
genome is known) is present in the case study group. The attacker then computes the population
allele frequencies for both the case study group and the reference population, as well as the allele
frequencies (intensities) for the target individual. The distance between the individual and the two
populations is then computed for all alleles (see Figure 4.1).

Figure 4.1: Homer’s attack on a single target individual. Yi is the allele intensity at the ith allele
in the target, Popi and Mi are the intensities of the same allele in the reference population and
case study group respectively, and D(Yi) = |Yi − Popi| − |Yi −Mi| is the distance measure used.
(Source: Erman Ayday and Jean-Pierre Hubaux, ACM CCS 2016.)

The distances across all alleles is summed, and the attacker can then make a prediction re-
garding the target’s membership in the populations. If the distance is positive, the individual is
predicted to be in the case study group, while a negative distance suggests that the individual is
closer to the reference population (and therefore not in the case study group). A distance value
close to 0 implies that the individual is equally likely to be in either population (see Figure 4.2).

In Homer’s experiment, the mixtures used (as the case study groups) were composed by ran-
domly sampling N individuals from the 58C Wellcome Trust Case-Control Consortium dataset of
1423 individuals (see [9] for the full list of mixtures).

4It is assumed that the reference population is accurately matched to the case study and the target.
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Figure 4.2: Homer’s attack on a single target individual: Yij is the allele intensity at the ith allele
in the jth target, Popi and Mi are the intensities of the same allele in the reference population and
case study group respectively. (Source: Homer et al. [9])

The findings of Homer’s results were largely consistent with prior expectations. It was found
that more SNPs allowed for greater resolution, and that the mixture fraction is the defining aspect
of the problem - smaller fractions require far more SNPs to identify correctly. However, what was
startling was the accuracy of the attack. To resolve mixtures where the target was <1% of mixture
(with p-value < 10−6), 25,000 SNPs are needed, while resolving mixtures where the target con-
tributes anywhere from 10% to 0.1% takes between 10,000 and 50,000 SNPs. On all the mixtures
tested in the experiment, the approach was universally successful, with the exception of mixtures
where the target had relatives present (but even in this case, the approach could be slightly modi-
fied to utilize the relatives to resolve the target individual).

The effectiveness of Homer’s attack shocked the NIH and the Wellcome Trust into action - the
datasets used by Homer et al. were withdrawn, and only re-released after being fully anonymized.
Homer’s attack had a grave impact on GWAS studies as a whole - the realization that individu-
als may now be identified in publicly available experimental datasets has continued to haunt such
studies ever since.

The effectiveness of Homer’s attack was further formalized and quantified in Visscher et. al [20].
Visscher used likelihood ratios and linear regression to determine an upper bound on the power of
such an attack to identify an individual in a complex mixture.

Wheeler, 2008: The complete genome of an individual by massively
parallel DNA sequencing

An interesting result was obtained by Wheeler et al. in 2008 [26]. Unlike the other papers presented
in this section, this result is not strictly an attack - instead, it just shows the power of modern
sequencing technology.

In this paper, Wheeler et al. report the DNA sequence of a diploid genome of a single individual,
(James D. Watson), using a combination of massively parallel DNA sequencing and comparison
to a reference genome. The former is not too relevant to the problem of genomic privacy, but

12



the latter is quite startling - just by comparing to the reference genome, Wheeler et al. identi-
fied 3.3 million single nucleotide polymorphisms, 10,654 of which cause amino-acid substitution
within the coding sequence, small-scale insertion and deletion polymorphisms, and copy number
variation resulting in the large-scale gain and loss of chromosomal segments [26]. These revelations
allowed researchers to obtain sensitive details about the target, which in turn prompted sections
of the individual’s genome to be removed from publicly accessible repositories. The combination
of cheaper sequencing and the abundance of reference genomic information has made it possible
to completely sequence an individual’s genome faster, cheaper and more accurately than ever before.

While the result shown in this paper is not strictly an attack, it is not hard to see its potential
to be exploited. Obtaining a small amount of DNA from a target, sequencing this DNA (using
techniques such as massively parallel sequencing), and then comparing the results obtained to
existing reference genomes or genomic datasets, can allow an attacker to fully reconstruct, and
then exploit, a target’s genetic information. Therefore, it is imperative that genetic and genomic
information is thoroughly protected.

GWAS and Aggregate Data Attacks

In a series of papers [21, 23, 24], it was demonstrated that it is possible to attack genomic privacy
using aggregated data and summary statistics.

In [21], Wang et al. attempt to show that the threat demonstrated by Homer et al. has been
greatly understated. In this paper, it is shown that individuals can actually be identified from even
a relatively small set of statistics, such as those usually published in GWAS papers. Two attacks
are presented - the first extends Homer’s attack with a much more powerful test statistic (based
on SNP correlation), and determines the presence of an individual using the statistics related to
a few hundred SNPs. The second has the potential to lead to the total disclosure of the SNPs
of hundreds of individuals participating in a study, just by studying information derived from the
published statistics. Both these attacks are shown to be effective even with low precision statistics
and with partial data, on both simulated and actual data.

Next, in [23], Wang et al. show that mining GWAS statistics threatens the privacy of a much
wider population. To do this, Wang et al. provide a method to construct a two-layered Bayesian
network whose goal is to reveal conditional dependencies between SNPs and traits in public GWAS
catalogues. Once this network is developed, efficient algorithms are presented for two attacks -
identity inference and trait inference. The targets of such an attack are not limited to participants
of the GWAS study. These approaches are tested and evaluated, and the results show that it is
possible to exploit unprotected GWAS statistics in order to identify individuals or derive previously
hidden information.

Finally, in [24], Wang et al. demonstrate that even with differentially private GWAS statistics,
there is still a risk for leaking individual privacy. Once again, a Bayesian network is constructed
through mining public GWAS statistics, and trait and identity inference attacks are performed on
both simulated and real human genetic data from 1000 Genome Project. These attacks attempt
to infringe the privacy of not only GWAS participants, but also other individuals. The success of
these attacks demonstrates that unexpected privacy breaches could occur and attackers can derive
identity and private information from aggregated GWAS data.
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Gymrek, 2013: Surname inference in public anonymized genomic
datasets

A more recent attack was demonstrated by Gymrek et al. [8]. In the paper, it is shown that
surname inference is possible from public anonymized genomic datasets using short tandem repeats
(STRs) on the Y chromosome.

This attack is made possible thanks to a quirk in human societal norms. Surnames are pater-
nally inherited in many human societies, resulting in co-segregation with Y-chromosome haplotypes.
This relation has been taken advantage of by genealogy companies, who link patrilineal relatives
by simply genotyping a handful of short tandem repeats5 (STRs) on the Y chromosome.

Now, the existence of numerous genomic databases and surname projects across the globe, which
together provide thousands of surname-haplotype pairs, has allowed this linkage to be exploited
by attackers seeking to de-anonymize data. The attack itself is not new - in the past this linkage
has been used to link the children of anonymous sperm donors to their biological fathers[8]. This
linkage, combined with demographic information, can completely identify an individual.

In Gymrek et al., end-to-end identification, from a personal genome dataset to a individual or a
set of individuals, is demonstrated. This identification process takes advantage of recreational ge-
netic genealogy databases (YSearch, SMGF), as well as simple internet searches. These databases
allow users to enter Y-STR alleles and search for matching records, and the records themselves
contain information such as location, pedigrees, and potential other spellings of the surname.

The initial attack (searching the databases, computing the confidence of each returned record,
and selecting the most likely one) achieved a success rate of just 12% - which is still dangerous
when genomic data is at stake - with 5% of surnames incorrectly guessed. However, combining this
data with demographic information allows narrowing down of the set of possible sample sources to
just a handful of individuals. In scenarios where the genomic data is available along with the tar-
get’s year of birth and state of residency (information not protected by HIPAA), using online public
record search engines and US census data can reduce the search size to less than a dozen individuals.

Such an attack proves that anonymized data, even if sanitized thoroughly and correctly, is not
immune to inference attacks, when other databases containing related information are available.

5Short (2-5 bases) sequences of DNA that are repeated numerous times in a head-tail manner.
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Chapter 5

Protecting Genomic Data

In this section, we will look at some of the mechanisms that are currently employed to protect
genomic data - in particular, we will consider the technical, cryptographic and policy mechanisms
that are in place to secure genomic data. We will also consider some possible privacy-preservation
techniques that could be applied or modified to secure genomic data.

Before considering the first mechanism, it is important to note that a trivial solution to most of
the problems plaguing genomic privacy would be to place limits on the data that is made publicly
available. For example, Sankararaman et al. [15] demonstrated how to limit the statistical power of
Homer’s attack by restricting the amount of data published. However, such a solution runs counter
to the central goal of sharing genomic data - to further research into genomics. Therefore, we will
only consider mechanisms that do not place limits on the amount of genomic data that is shared.

Similarly, it does not suffice to take a simple “security-by-obscurity” approach. Under this
approach, the mitigation strategy is to simply remove obvious identifiers before making the dataset
public. However, such schemes are based on the low probability of an adverse event, and therefore
remain vulnerable in the face of a determined and motivated attacker. Furthermore, such a view
is somewhat short-sighted - it is impossible to estimate future risks of adverse events1.

The failings of security by obscurity are best described in Shannon’s maxim (which is a reformu-
lation of Kerchoff’s principle), which states that an adversary knows the system they are attacking,
and that “one ought to design systems under the assumption that the enemy will immediately
gain full familiarity with them2”. Therefore, it is important to design schemes that do not rely on
the small chances of a breach, especially when knowledge of the workings of the scheme greatly
amplifies these odds. That being said, there is nothing wrong with schemes utilizing secrecy - they
just should not rely on it alone.

Access Control

The implementation of access control schemes could greatly improve genomic privacy [6]. Consider
the following implementation, used by the NCBI’s database of Genotypes and Phenotypes (dbGaP):

• Sensitive genomic data would be stored in a secure location, and all requests to access it
would be screened and logged.

1“The Black Swan” - Nicholas Taleb
2Claude Shannon, 1985

15



• If the request is approved, the data may be accessed or downloaded, with the condition that
the data will be viewed/stored under secure conditions, and no attempts will be made to
identify individuals. Violating these conditions would result in access being revoked, as well
as other potential penalties.

• Approved users are required to file frequent reports about the usage of the data, and report
any adverse events.

While this system seems well-intentioned, there is a lack of oversight once the user has gained
access to the data, and the reporting of breaches is left entirely up to the (potential malicious)
user. Furthermore, revoking access and any other penalties may prevent the violating user from
repeating their actions in the future, but does nothing to stop a breach from happening in the first
place.

Alternatively, we could employ a trust-but-verify scheme, where users cannot download the data
without restrictions, but can perform only certain queries depending on their access privileges. Such
a system supports better early detection - malicious queries, actions or other anomalous behaviors
can be flagged as they happen, and can be handled directly.

Yet another model that could be employed is let the participants of a study manage access
control [6]. In such a model, participants grant access to their genomic data, bypassing the need
for a data access committee. Such an implementation requires on-going communication between
researchers and participants, and allows participants to modify their preferences whenever they
desire. This implementation allows for higher levels of participant involvement, and makes the
process of sharing genomic information more transparent. An example of this model is already in
use by PEER (Platform for Engaging Everyone Responsibly)3.

Summary Statistics

A widely-used obfuscated release technique is the use of summary statistics. Several studies ([7,
12]) have explored the differentially private release of common GWAS data summary statistics,
such as allele frequencies, χ2-statistics, p-values[7], or the location of variants[12].

Fienberg et al. propose new methods to release aggregate GWAS data without compromising
an individual’s privacy [7]. These methods are evaluated on both simulated data and a GWAS of
canine hair length. However, it is found that a large amount of noise must be added even for the
release of GWAS statistics from a small number of SNPs, meaning that these schemes are often
impractical. These schemes also fall short on bigger and sparse data, where a summary statistic
does not properly capture the complexity of the dataset. To counter these short-comings, the au-
thors propose a differentially private algorithm for a specific form of penalized logistic regression.
In this algorithm, noise is added to the analysis itself. However, this scheme is very much in its
infancy - see [7] for more details.

3http://www.geneticalliance.org/programs/biotrust/peer
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Privacy Metrics: k-anonymity, l-diversity, t-closeness

Another alternative is to better quantify the privacy offered by current anonymization techniques.

The first of these measures is k-anonymity, which is a property of anonymized data. A dataset
is said to be k-anonymous if the information for any given person contained in the dataset cannot
be distinguished from the information of at least k−1 other individuals. In other words, there exist
at least k individuals with the same combination of attributes in the dataset, for all combinations
of attributes. There are two common methods for achieving k-anonymity.

Suppression : Certain values of attributes are masked (e.g. replaced by a “*”). This may be all
or some of the values that appear in a column of the dataset.

Generalization : Individual attribute values are replaced by broader categories. For example,
the value “23” in the X column may be replaced by the range “20 ≤ X < 30”.

Meyerson and Williams (2004) 4 proved that optimal k-anonymity is an NP-hard problem, but
heuristic methods (such as k-Optimize) and practical approximation algorithms (with an approxi-
mation guarantee of O(log k) do exist. However, since k-anonymity does not include any random-
ization, it is still susceptible to inference attacks. It is also not well suited for high-dimensional
datasets, where a single individual (k = 1) can be unique identified very easily using the combination
of attributes. Finally, use of k-anonymity can skew the results of a data set if it disproportionately
suppresses and generalizes data points.

An alternative measure is l-diversity. l-diversity is a form of group-based anonymization that
preserves privacy by reducing granularity. An equivalence class is said to have l-diversity if there
are at least l “well-represented5” values for the sensitive attribute, and a table is said to have
l-diversity if every equivalence class within it has l-diversity6. A practical example of l-diversity
appears in location-tracking - a dataset containing individuals’ location tracking data is said to be
l-diverse if using all of the data in the dataset only allows a particular individual’s true location to
be narrowed down to one of l potential locations.

l-diversity was motivated by k-anonymity’s susceptibility to inference attacks, and was designed
to maintain all the privacy offered by k-anonymity while additionally maintaining the diversity of
sensitive fields. As such, the techniques used to achieve l-diversity are similar to those used for
k-anonymity.

Finally, we can consider t-closeness. t-closeness is an even more refined version of l-diversity,
where the distribution of values taken on by an attribute are considered before modifying the at-
tribute. This change was made to deal with the difficulty of protecting l-diversity against attribute
disclosure (as not each value may display the same sensitivity, and rare positive attributes may
give away more information than a common negative one).

The original paper that introduced t-closeness defines it as follows: “an equivalence class is said
to have t-closeness if the distance between the distribution of a sensitive attribute in this class and
the distribution of the attribute in the whole table is no more than a threshold t. A table is said

4https://dl.acm.org/citation.cfm?id=1055591
5Relatively commonly occurring.
6From “t-Closeness: Privacy beyond k-anonymity and l-diversity (2007)”
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to have t-closeness if all equivalence classes have t-closeness”.

Whilst these three measures have not been explicitly developed for genomic data, they could be
useful in helping quantify the privacy offered by current anonymization or obfuscating schemes.

Cryptographic Techniques

In this thesis, we review three cryptographic techniques, and focus on their potential for use in
genomic privacy.

The techniques we review are:

• Differential Privacy (DP): DP is a technique that aims to maximize the accuracy of queries
from statistical databases while minimizing the chances of identification.

• Secure Multi-Party Computation (MPC): MPC techniques allow for parties to jointly com-
pute a function over their inputs while keeping those inputs private.

• Homomorphic Encryption (HE): HE is a form of encryption that allows for computation on
ciphertexts, generating an encrypted result, that when decrypted, matches the result of the
same operations performed on plaintext.

Differential Privacy

Work in differential privacy was motivated by Dalenius’ 1977 desideratum for statistical databases,
which states that nothing about an individual should be learnable from the database that cannot
be learned without access to the database. This result was shown to be impossible [5] - it is in-
deed impossible to publish information from a private statistical database without revealing some
amount of private information, and the entire database can be revealed using a very small number of
queries. The main obstacle to this desiderata, and the cornerstone of the impossibility result, is the
presence of auxiliary information that is available to the adversary from sources other than the sta-
tistical database. To demonstrate the power of such information, consider the following example [5].

Suppose the exact height of an individual is deemed to be highly sensitive and private infor-
mation, and that the revelation of such information would constitute a privacy breach. Assume
the existence of a database that contains the average heights of women of different nationalities.
An adversary who has access to this database and the auxiliary information “Helen is four inches
taller than the average American woman” can learn Helen’s height. An adversary without access
to the database learns nothing new about her height. This example works regardless of whether
Helen is in the database or not, thus proving that Dalenius’ goal (of providing privacy in statistical
databases using semantic definitions) is impossible. A formal proof of this impossibility result is
given in [5], but the crux of it is as follows - an adversary (modeled as a Turing Machine) with access
to auxiliary information can bypass the privacy mechanisms in place on any statistical database
with non-negligible probability, while an adversary without such information cannot.

This prompted the creation of Differential Privacy by Dwork in 2006 [5]. In this paper, Dwork
presents differential privacy as a measure which, intuitively, captures the increased risk to one’s
privacy incurred by participating in a database, and provides a mechanism that can be used to
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achieve any desired level of privacy under this measure.

The formal definition of this measure is as follows - A randomized function K gives ε-differential
privacy if for all data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S]

Such a mechanism addresses concerns that participants in a study may have about the leakage of
their information. The removal of their information from a study would make no outputs signifi-
cantly more or less likely. This definition can be extended to groups of individuals - c individuals
concerned about the leakage of their collective data can bound this probability above by at most
exp(ε). The scheme is designed to disclose aggregate information for large groups, and therefore
disintegrate with large c.

An alternative explanation of ε-differential privacy comes from the frequentist perspective [25].
In this perspective, exp(ε) can be considered as the bound on the power-to-significance ratio of
any statistical test an adversary may use to determine the disease status of a participant based on
ε-differentially private data [17].

The privacy mechanism used to achieve differential privacy is rather simple - it works by adding
appropriately chosen random noise to the answer a = f(x), where X is the database and f is the
query function. The magnitude of the random noise added is chosen as a function of the largest
change a single participant could cause in the output to the query function (referred to as the
sensitivity of the function). More formally, for f : D → Rd, the sensitivity of f is

δf = max
D1,D2

||f(D1)− f(D2)||

for all D1, D2 differing in at most one element 7. The privacy mechanism Kf , for a query func-
tion f , computes f(X) and adds random noise by sampling from a scaled symmetric exponential
distribution with variance σ2, using the density function

Pr[Kf ) = a] ∝ exp(−||f(X)− a||/σ)

. For f : D → Rd, Kf gives ( δfσ )-differential privacy.

Wasserman & Zhou [25] show that one way to ensure the preservation of information in dif-
ferential privacy is to require that the distance between the probability distribution functions -
the true (based on the raw data) and the empirical (computed from the released data) - remain
small. The rate at which this distance goes to zero (with increase in the sample size of the released
data) is a measure of the accuracy of different privacy mechanisms. In particular, for differential
privacy methods using the exponential mechanism to add noise, the accuracy is proportional to the
rate at which the empirical distribution concentrates into a small ball around the true distribution.
Unfortunately, most of the privacy mechanisms investigated in the paper converge slower than the
optimal (minimax) rate. The statistical view of differential privacy is explained in more detail in
[25].

The pioneering implementation of Differential Privacy in genomic privacy was demonstrated in
Berger et al. [17]. In their paper, Berger et al. introduce a novel variant of differential privacy

7This scheme works best when δf is small
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tailored to genomic databases, with the aim of protecting private phenotype information (such as
disease status) while correcting for population stratification.

Berger et al. introduced the concept of Phenotypic Differential Privacy (PDP), which they
define as “a formal definition of privacy that attempts to preserve private information about indi-
viduals (such as disease status)”. Just like differential privacy itself, PDP requires the choice of a
privacy parameter/budget ε, which controls the level of privacy guaranteed to all participants in
the study - the closer to zero it is, the more privacy is ensured, while the larger it is, the weaker
the privacy guarantee is [17].

The framework introduced in Berger et al. performs GWAS while using principles of differential
privacy to protect phenotype information. Privacy-preserving GWAS results, based on EIGEN-
STRAT and linear mixed model (LMM)-based statistics (both of which correct for population
stratification), can be produced. The differentially private statistics (PrivSTRAT and PrivLMM),
are tested on both simulated and real GWAS datasets, and it is found that meaningful results can
be efficiently returned on two types of queries (GWAS statistics at SNPs of interest and highly
associated SNPs of diseases of interest) without compromising privacy. Further details and results
of this framework can be found in [17].

The development of such a framework is very encouraging. The main computational bottleneck
in the framework comes from the computation of the original statistics. This suggests that such
an implementation is well positioned to take advantage of the latest advances in GWAS analysis,
which could give us more computationally efficient methods for generating the statistics. The use
of differential privacy in genomic datasets would allow for widespread sharing and exchange of
genomic information, and the quantified privacy guarantees it provides would hopefully encourage
increased participation in genomic studies.

Another (earlier) implementation of the use of differential privacy on genomic datasets can be
found in Johnson et al. [12]. In their 2013 paper, Johnson et al. present privacy-preserving ex-
ploratory data mining algorithms, where analysts do not need to know a priori which or how many
SNPs to consider in GWAS datasets.

Johnson et al. develop such algorithms for the computation of the number and location of
significantly associated SNPs (using a distance-based method, explained below), the significance of
a statistical test between a disease and a given SNP, and measures and structures of correlations
between SNPs [12]. The scheme presented in the paper supports the following GWAS queries:

1. the number of significant SNPs for a given p-value,

2. the location of the k SNPs with the highest p-value,

3. the location of the longest correlation block8,

4. the p-value of a given SNP, and

5. the correlation between two SNPs.

Using a combination of such queries, an analyst is able to translate a reasonable idea of the number
of significant SNPs into a quantified understanding of their identities, p-values and correlations

8See [12].
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[12], thus enabling them to better select the statistical tests and correlation measures to use.

To guarantee differential privacy, Johnson et al. develop a distance-score mechanism, in order
to better deal with the complicated output spaces of some queries and address their high sensitiv-
ity9. This distance-score mechanism is used instead of a Laplace-mechanism (for adding noise to
queries), thus preserving the utility of the queries. The exponential mechanism (outlined above)
is then used, and differential privacy follows. Finally, the algorithms presented are then tested on
real-world datasets (in this case, a GWAS dataset on Irritable Bowel Syndrome), and are shown to
guarantee differential privacy while returning reasonably accurate results10.

However, schemes like [17] and [12] are few and far between, and implementations of differential
privacy are very limited in the queries and statistics they support 11. Furthermore, it is hard to find
a balance between a reasonable ε-parameter and meaningful results. From a research perspective,
a low privacy parameter is beneficial, as it allows for more noise-less, and therefore more accurate,
inference - however, such a privacy parameter would expose participants to potential identification.
Similarly, a high amount of privacy would protect participants of a study, but could render the
results of queries to the database meaningless (if too much noise is added).

Based on the results of these studies, it is clear that there is a need for another mechanism
that can both satisfy differential privacy and add less noise to released statistics, or the need for a
different model to supplement differential privacy.

Multi-Party Computation (MPC)

The latest breakthrough in using MPC for genomic privacy has come from Bejerano et al. [11].
The approach in this paper is based on Yao’s Protocol for Two-Party Computation [27].

Yao’s protocol can be demonstrated using a simple example. Consider a scenario where two
parties, Alice and Bob, each possess a secret number (a and b respectively) between 1 and 10. Alice
and Bob wish to compute whether a ≥ b, without revealing their secret number to each other. To
do this, they construct 100 indistinguishable boxes, one corresponding to each possible (a, b) pair.
Each of these boxes has two locks on it - one corresponding to one of the 10 keys Alice has (one
for each value of a), and one for each of the 10 keys Bob has (one for each value of b). In each box,
they leave a note. In 55 of these boxes, the note reads “Alice wins” (as in 55 cases, a ≥ b), and in
the remaining 45 boxes, “Bob wins”.

Once the initial setup is completed, Alice and Bob leave the room housing the boxes. Alice
then re-enters the room, and tries to unlock boxes until she unlocks the 10 boxes that correspond
to the value of a she has chosen. Alice leaves the room, and Bob enters - he sees the the 10 partially
unlocked boxes, and attempts to unlock them all, until he finds the one that corresponds to his
choice of b. He can read the note inside the box, letting him know if a ≥ b, and then leave the
room. Alice re-enters, reads the note, and leaves the room.

9See figure 8.2 for the function, and details of the distance function can be found in [12].
10The authors note that the distance-score mechanism being used is only an approximation, and that computational

advances here would help increase accuracy.
11Such schemes also often require very large numbers of participants to guarantee acceptable levels of privacy or

utility.
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This concludes the protocol. At the end of it, Alice and Bob both know the truth value of a ≥ b,
but neither has learned each other’s secret. This is Yao’s Protocol for Two-Party Computation.

Bejerano et al. attempt to leverage this protocol in the exchange of genomic data [11]. The
paper introduces a proof-of-concept cryptographic implementation to allow two parties exchange ge-
nomic data. First, patient genomes are converted into simple-valued vectors to reveal the causative
variants (this conversion process is described below). Yao’s protocol is then used to perform the
desired computation without revealing any participant’s input [11]. To apply Yao’s protocol, it
is assumed each individual involved in a study has private access to her own exome/genome. If
identification of a causal variant is the goal, each individual is given a variant vector of all possible
missense and nonsense variants in the human genome (28,413,589 bases for the exome) - the indi-
viduals then note, using “true” or “false”, whether they have each variant or not. If a causal gene
is being identified, each individual is given a gene vector of 20,663 genes - the individuals then note
“1” next to a gene if they have one or more rare functional variants in the gene, and “0” otherwise
[11].

The framework defines three simple Boolean operations - INTERSECTION, SETDIFF, and MAX -
that are used for patient diagnosis. From [11]: “INTERSECTION of two variant vectors reveals all
rare functional variants that two parties share, SETDIFF of an affected and unaffected individual’s
variant vector allows us to discard variants seen in healthy individuals, ... MAX operation can be
used to find a gene containing rare functional mutations in the greatest number of affected cases”.
The privacy guarantees provided by the system are quantified by the “protection quotient” - the
fraction of private information that is exposed neither to the other participants nor to the entity
running the computation. In the version of the protocol used in this paper, this is the ratio of the
total number of patient variants withheld from the output to the total number of patient variants
input into the computation12 [11].

The framework proposed by Bejerano and et al. is tested by using the three secure operations
over actual patients with causal Mendelian variants. The results show that the protection quotient
of these operations is at least 97.1%, with the MAX operator achieving a measure of 99.7% - a full
summary of the results can be seen in [11], and in the appendix of this paper. The performance of
this scheme is rather impressive - even on single-threaded execution, the performance is very good,
and comparable to the best techniques currently employed in genomic privacy.

While this paper demonstrates that MPC is a potential avenue for achieving genomic privacy,
there are still numerous limitations. The current protocol allows only for two-parties to exchange
information - scaling this to n-parties is currently unfeasible. Furthermore, even with two-parties,
this framework is highly restrictive - it only supports the three given operations. While these
operations may suffice for the questions being investigated in some studies, they are unlikely to
cover all the research questions that are asked when studying genomic data. At this time, it
is primarily a proof-of-concept work, and shows that the genomic privacy may have a future in
multi-party computation.

Homomorphic Encryption (HE)

An HE scheme enables arbitrary computation on encrypted genomic data and allows for the reuse
of the same encrypted input across multiple computations. It allows for large encrypted datasets

12Unprotected diagnoses have a protection quotient of 0%.
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to be uploaded and stored on an untrusted cloud, and allows for computations to be performed on
it without access to decryption keys. A good initial foray into the use of this technique for bioin-
formatics is by Dowlin et al. [4], who present Microsoft Research’s “Simple Encrypted Arithmetic
Library”13, a set of tools to be used for experimentation and research purposes.

Implementations of basic homomorphic encryption (e.g. systems that only allow one operation)
have existed for years. A homomorphic encryption solution which allows an unlimited number
of pairs of operations (such as addition and multiplication) can be used to compute any circuit,
and is therefore referred to as fully homomorphic (such a scheme was first presented by Gentry in
2009). Numerous schemes have been proposed, and for practical applications, only homomorphic
encryption schemes which allow for a fixed amount of computation are used. Knowing this com-
putation in advance leads to improved parameters, and better computational and storage efficiency.

Fully Homomorphic Encryption (FHE) provides a versatile solution for many privacy problems
and scenarios. A single data owner can encrypt and store data securely in an untrusted cloud, and
the use of either private or public key versions can allow many parties to upload new data to this
repository, or perform computations on encrypted data. The scope of the access by other parties
is fully determined by the data owner.

However, as tempting as it is to see FHE as a potential silver bullet for the problems facing
genomic privacy, it is important to recognize its limitations. Existing FHE implementations are
quite inefficient, and do not scale well when used on large genomic datasets. For reference, the
Yao’s Protocol used by Bejerano et al. is 5000-10000 times faster than the latest FHE scheme [11].
Furthermore, many of the proposed schemes remain as proof-of-concept works, without practical
and usable implementations. Therefore, FHE is not currently a viable option for genomic privacy
- the design of new implementations, or the optimization of existing ones, is needed before this
cryptographic technique can see widespread use in genomic privacy.

Other Cryptographic Techniques

Another major technique that may in the future be employed for genomic privacy is Functional
Encryption (FE). FE is a form of public-key encryption where possessing a secret key allows one
to learn a function of what the ciphertext is encrypting. As of 2012, schemes existed that support
arbitrary functions, but no schemes built specially for genomic data have been developed.

Finally, no effort in privacy in the modern age is complete without at least a brief mention of
blockchain. Currently, blockchain has only been suggested as a means for individuals to monetize
access to their genomic data14. The crux of the current implementations is as follows - individuals
commit their data to the blockchain, maintained by the company offering this service, thus creating
a (supposedly) immutable entry of their data. External parties then pay for access to this history,
and some portion of this money is paid to the individual who owns the genetic data. The poten-
tial benefits of such a scheme are obvious. The use of a blockchain would allow parties to reach
distributed consensus without the need for a middleman. This would allow for direct interaction
between the providers of the data (participants) and the consumers (researchers), and would move
power and control towards participants. However, such schemes still have their issues. The first

13http://sealcrypto.codeplex.com/
14For an example of such a scheme, see Nebula Genomics.
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is their potential inefficiency - the amount of computing power needed to start and maintain the
distributed system is still high. There may also be significant opposition to such a scheme, as it
reduces the influence and control governments and institutions have on individuals’ data. These
blockchain based genomic privacy approaches are still very much in their infancy, and are not yet
ready for research data-sharing. Therefore, this paper will not delve further into blockchain-based
schemes.

Ethics and Policy Changes

Since its inception, genomic research has struggled to find the balance between genetic privacy
and data access. As explained by Shi [16], “technological advances are followed and accompanied
by concerns, debates, and controversies on a wide range of topics in ethics, regulations, and laws
regarding protection and preservation of genetic privacy”. While such laws and regulations often
lag behind, their impact on personal genomics should not be understated.

Protecting genomic anonymity is extremely difficult, thanks to the ability to combine patient
data (protected or not) with auxiliary information. As a result, it is more important than ever to
focus on educational efforts to train relevant parties (students, researchers, medical practitioners)
about the tools available for genetic privacy protection. Large human genome projects such as the
Human Genome Project, HapMap Project and the 1000 Genomes Project have already started
providing education on the ethics of genomics. There is also a need to improve education and
awareness on the technical aspects of genomic privacy - many of the technical and cryptographic
solutions currently used and proposed (including those in this thesis) run the risk of being too
inaccessible for widespread use. To deal with this situation, we must strive to develop more easily
usable and accessible tools, and create documentation and resources to help learn and use these
tools.

As far as regulation goes, one milestone development in genomic data regulation in the United
States was the Standards for Privacy of Individually Identifiable Health Information15 in the Health
Insurance Portability and Accountability Act of 1996 (HIPAA). This standard addressed the use
and disclosure of an individual’s health information by organizations subject to this regulation16,
and helped provide standards for individual privacy rights to understand and control the use of
their health information[16].

However, HIPAA has its limits. Health and medical information not originating from covered
organizations are not covered by HIPAA, meaning that commercial sequencing and genetic screen-
ing companies generate large amounts of sensitive and identifiable data that is not regulated by
HIPAA. This is also true for other consumer-generated health information, such as fitness trackers,
mobile apps, and social media - the data from these sources are not afforded the same regulation.
Furthermore, the standard only protects identifiable health information, with no restrictions on the
use or disclosure of de-identified data. This is potentially problematic, as the ability to combine
publicly accessible auxiliary information (including metadata such as age, race or location) with
de-identified information can be used to re-create and disclose sensitive information (such as in the
attack by Gymrek et al.).

15i.e. the Privacy Rule
16Health providers, insurers, data clearing houses and their business partners.
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These shortcomings have prompted proposals to revise HIPAA to handle recent advances - in
particular, there is a need to regulate data generated by entities not covered by the original stan-
dard. There have also been calls to revamp consent forms, with studies showing that informed
consent in genomic studies is often non well-informed - participants are rarely aware of the true
risks of data exposure, or educated about the protection techniques (or lack thereof) that will be
employed to protect their data. There is also the need to employ more dynamic and transparent
consent techniques that allow participants to update their preferences or revoke their consent, and
be more involved in the entire data-sharing process.

There is also a need to regulate private data exchange in cross-institutional studies [22]. Data
may be shared between research institutions, sequencing facilities, and insurance and health care
providers, and the lack of a regulatory framework exposes this sensitive data to numerous risks.
Inconsistent protection and privacy-preserving measures can greatly increase the risk of data ex-
posure. It is entirely possible that one party deems an aspect or attribute of the data to be not
worthy of protection, while other parties consider it to be sensitive - in such a scenario, any privacy-
preserving techniques employed by the first party are undone by the revelation of this information
by latter parties. This lack of a unified front is greatly beneficial to adversaries, who can exploit
inconsistencies to bypass the safeguards and measures in place to protect genomic data.

The prospects for regulation are further exacerbated when these institutions are spread across
the globe, and the national laws governing the disclosure and use of genomic data in each of these
institutions may be largely incompatible. A potential solution would be the creation of interna-
tional regulations governing the use and disclosure of genomic data. However, such regulation
remains extremely unlikely - vast differences in medical, health care and research systems, privacy
and data-protection laws, and global politics all stand in the way of such regulation being crafted
and signed into action.

Finally, there is a need for more advocacy for genomic privacy. The past decade has seen the
meteoric rise in the prominence and standing of digital rights and privacy groups, which in turn
has fostered somewhat of a privacy revolution. The actions of such groups and individuals has
furthered public awareness and the relevant parties to address these concerns, and in some cases,
even draft legislation that deals with the biggest threats to privacy. Groups such as the Electronic
Frontier Foundation (EFF) have recently expanded into genomic privacy17, and other groups are
showing signs of doing so too, but there is still a long way to go.

17https://www.eff.org/issues/genetic-information-privacy
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Chapter 6

Conclusion

The emergence of cheap genomic sequencing technologies has resulted in vast amounts of genomic
data becoming publicly available. This, combined with recent advances in computer science, has
ushered in the genomics age - we now have extremely efficient algorithms to analyze vast genomic
datasets in search of insights that will further biology, healthcare, and other related fields. How-
ever, in the search for these insights, it is tempting to ignore the sensitivity of the genomic data
we are collecting and sharing. Genomic privacy seeks to protect these data, and the privacy of the
individuals they are collected from.

This thesis surveyed the current state of genomic privacy, from the threats and attacks facing it,
to the current security practices used to protect genomic data, to potential technical, cryptographic
and policy solutions that could be employed to safeguard this data.

Unfortunately, while the existing mechanisms to provide genomic privacy are clearly valuable,
none of the proposed solutions are perfect. Simpler measures such as anonymization or access con-
trol provide surface level security, but do not hold up against even a mildly persistent adversary.
The cryptographic approaches, such as multiparty computation or homomorphic encryption, re-
main our most secure options, but they are too limited in the actions and queries they support, and
computationally too expensive, for widespread use. Obfuscated release techniques such as summary
statistics or differential privacy greatly limit the information that an adversary can obtain from
the datasets, but they also limit the insights researchers can gain from interacting with the data.
Even the non-technical solutions, such as reworking the consent systems currently in place or draft-
ing new legislature and regulations to protect genomic data, are a long way from being implemented.

Finding the balance between privacy and utility is difficult - the collection, use and distribution
of genomic data has brought about unparalleled progress, and it is often hard to justify why privacy
concerns (many of which are still theoretical) should be placed ahead of potential progress. Even if
such a balance can successfully be struck, the ever changing nature of genomics research, coupled
with the endless progress in computation and cryptography, would render any solution short-lived;
it would either fail in the presence of a previously unknown adversary, or survive long enough to
become outdated or poorly suited to the newest goals in research1. Therefore, it seems unlikely
that we see a complete solution to genomic privacy (i.e. one that satisfies the desiderata presented
in Chapter 3) in the very near future.

1I am reminded of a quote from Batman - “You either die a hero, or live long enough to see yourself become the
villain”.
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However, this should not diminish the importance of research on genomic privacy. The dangers
to genomic data are very real, and the longer they go unchecked, the more we risk the privacy and
safety of participants of genomic studies and datasets. It is vital that we recognize the sensitivity
of this data, and that we consider the privacy of the people who contribute it to be of the utmost
importance. The schemes and suggestions proposed in this paper, while flawed in many regards,
still represent an improvement over the current approaches being employed to safeguard genomic
data. These techniques should be treated and employed as makeshift solutions, and used until
improvements are made to them, or better approaches are developed. In the near term, a side-
by-side comparison of different genomic privacy techniques - DP, MPC and HE - in terms of their
computational efficiency and privacy preservation (measured using k-anonymity and other privacy
metrics) on standard datasets appears to be a worthwhile direction for research.

There are many promising signs. Techniques such as multi-party computation and homomorphic
encryption, are well-poised to take advantage of the latest breakthroughs in computer science,
which could render them computationally viable for widespread use. There may be ways to fine-
tune obfuscated release techniques such as summary statistics or differential privacy so that we
achieve reasonable and well-quantified tradeoffs between privacy and utility. Simpler approaches,
such access control and anonymization, which may be vulnerable when used individually, can be
combined to create systems that offer greater security guarantees2. Increased education and public
awareness of the sensitivity of genomic data has caused a push for more legislation governing
the collection, use and disclosure of genomic information, and for a revamp of traditional consent
systems. Finding workable solutions for the problems facing genomic privacy remains an achievable
goal that we must strive to work towards, and I look forward to seeing what we can accomplish
over the coming years.

2This is the “defense in depth” approach to computer security.
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Chapter 8

Appendix

Figure 8.1: The distance-score measure used in Johnson et al. - see [12] for more details.
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