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Abstract

Long-range spatial interactions among genomic regions are critical for regulating gene
expression, and their disruption has been associated with a host of diseases. However,
when modeling the effects of regulatory factors, most deep learning models either ne-
glect long-range interactions or fail to capture the inherent 3D structure of the un-
derlying genomic organization. To address these limitations, in this thesis we present
two graph-based neural network architectures: GC-MERGE, a Graph Convolutional
Model for Epigenetic Regulation of Gene Expression, as well as XL-MERGE, Xavier
Loinaz’s Model for Epigenetic Regulation of Gene Expression. Both integrate measure-
ments of both the spatial genomic organization and local regulatory factors, specifically
histone modifications, for predicting gene expression. This formulation enables these
models to incorporate crucial information about long-range interactions via a natural
encoding of spatial interactions into a graph representation. We apply GC-MERGE
and XL-MERGE to datasets for the GM12878 (lymphoblastoid), K562 (myelogenous
leukemia), and HUVEC (human umbilical vein endothelial) cell lines and demonstrate
predictive performance comparable to state-of-the-art methods for GC-MERGE, and su-
perior performance to state-of-the-art methods for XL-MERGE. In addition, we give
evidence that GC-MERGE is interpretable in terms of the observed biological regulatory
factors, highlighting both the histone modifications and the interacting genomic regions
contributing to a gene’s predicted expression. We provide model explanations for sev-
eral exemplar genes and validate them with evidence from the literature. These models
not only present a novel setups for predicting gene expression by integrating multimodal
datasets in a graph convolutional framework, but also enable interpretation of the biolog-
ical mechanisms driving the model’s predictions. The code for GC-MERGE is available
at: https://github.com/rsinghlab/GC-MERGE.

https://github.com/rsinghlab/GC-MERGE
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2.1 Model comparison and evaluation. GC-MERGE gives state-of-the-art
performance for the regression task on all three studied cell lines. (a) The
Pearson correlation coefficients (PCC) obtained by running GC-MERGE
on each cell line are displayed. (b) GC-MERGE outperforms all the base-
line models for each of the three cell lines. Scores are calculated as the
average of 10 runs and standard deviations are denoted by error bars. . . 14

2.2 Model explanations for exemplar genes. Top: For (a) SIDT1, des-
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corresponding to known enhancer regions regulating SIDT1 [13] (note that
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mentary Tables B.1 and B.2). All other nodes are displayed in gray. Nodes
with importance scores corresponding to outliers have been removed for
clarity. Bottom: The scaled feature importance scores for each of the five
core histone marks used in this study are shown in the bar graph. Results
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1. Introduction

1.1 Background

1.1.1 Longe-Range Gene Regulation

Gene regulation determines the fate of every cell, and its disruption leads to diverse dis-
eases ranging from cancer to neurodegeneration [17, 26]. Although specialized cell types –
from neurons to cardiac cells – exhibit different gene expression patterns, the information
encoded by the linear DNA sequence remains virtually the same in all non-reproductive
cells of the body. Therefore, the observed differences in cell type must be encoded by
elements extrinsic to sequence, commonly referred to as epigenetic factors. Epigenetic
factors found in the local neighborhood of a gene typically include histone marks (also
known as histone modifications). These marks are naturally occurring chemical addi-
tions to histone proteins that control how tightly the DNA strands are wound around the
proteins and the recruitment or occlusion of transcription factors. However, the focus of
attention in genomics has shifted increasingly to the study of long-range epigenetic reg-
ulatory interactions that result from the three-dimensional organization of the genome
[25]. For example, one early study demonstrated that chromosomal rearrangements, some
located as far as 125 kilo-basepairs (kbp) away, disrupted the region downstream of the
PAX6 transcription unit causing Aniridia (absence of the iris) and related eye anomalies
[16]. Thus, chromosomal rearrangement can not only directly affect the expression of
proximal genes but can also indirectly affect a gene located far away by perturbing its
regulatory (e.g., enhancer-promoter) interactions. This observation indicates that while
local regulation of genes is informative, studying long-range gene regulation is critical to
understanding cell development and disease. However, experimentally testing for all pos-
sible combinations of long-range and short-range regulatory factors for ∼ 20, 000 genes
is infeasible given the vast size of the search space. Therefore, computational and data-
driven approaches are necessary to efficiently search this space and reduce the number of
testable hypotheses due to the sheer scope of the problem.

1.1.2 Related Past Work

Recently, deep learning frameworks have been applied to predict gene expression from
histone modifications, and their empirical performance has often exceeded the previous
machine learning methods [4, 6, 14]. Among their many advantages, deep neural net-
works perform automatic feature extraction by efficiently exploring feature space and
then finding nonlinear transformations of the weighted averages of those features. This
formulation is especially relevant to complex biological systems since they are inherently
nonlinear. For instance, Singh et al. [30] introduced DeepChrome, which used a convo-
lutional neural network (CNN) to aggregate five types of histone mark ChIP-seq signals
in a 10, 000 bp region around the transcription start site (TSS) of each gene. Using a
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similar setup, they next introduced attention layers to their model [29], yielding a com-
parable performance but with the added ability to visualize feature importance within
the local neighborhood of a gene. These methods framed the gene expression problem as
a binary classification task in which the gene was either active or inactive. Agarwal et
al. [1] introduced Xpresso, a CNN framework that operated on the promoter sequences
of each gene and 8 other annotated features associated with mRNA decay to predict
steady-state mRNA levels. This model focused primarily on the regression task, such
that each prediction corresponded to the logarithm of a gene’s expression. While all the
studies listed above accounted for combinatorial interactions among features at the local
level, they did not incorporate long-range regulatory interactions known to play a critical
role in differentiation and disease [17, 26].

1.1.3 Challenges

Modeling these long-range interactions is a challenging task due to two significant rea-
sons. First, we cannot confidently pick an input size for the genomic regions as regulatory
elements can control gene expression from various distances. Second, inputting a large
region will introduce sparsity and noise into the data, making the learning task difficult.
A potential solution to this problem is to incorporate information from long-range inter-
action networks captured from experiments like Hi-ChIP [19] and Hi-C [34]. These assays
use high-throughput sequencing to measure 3D genomic structure, in which each read pair
corresponds to an observed 3D contact between two genomic loci. While Hi-ChIP focuses
only on spatial interactions mediated by a specific protein, Hi-C captures the global in-
teractions of all genomic regions. Recently, Zeng et al. [39] combined a CNN, encoding
promoter sequences, with a fully connected network using Hi-ChIP datasets to predict
gene expression values. The authors then evaluated the relative contributions of the pro-
moter sequence and promoter-enhancer submodules to the model’s overall performance.
While this method incorporated long-range interaction information, its use of HiChIP
experiments narrowed this information to spatial interactions mediated by H3K27ac and
YY1. Furthermore, CNN models only capture the local topological patterns instead of
modeling the underlying spatial structure of the data. Thus, the interpretation of their
model was limited to local sequence features.

1.2 Novel Graph-Based Methods to Model Long-Range

Epigenetic Gene Regulation

1.2.1 GC-MERGE

To address the previously mentioned issues, we developed a Graph Convolutional Model
of Epigentic Regulation of Gene Expression (GC-MERGE), a graph-based deep learning
framework that integrates 3D genomic data with existing histone mark signals to predict
gene expression. Figure ?? provides a schematic of our overall approach. Unlike previous
methods, our model incorporates genome-wide interaction information by using the Hi-C
data. To accomplish this, we use a graph convolutional network (GCN) to capture the
underlying spatial structure. GCNs are particularly well-suited to representing spatial
relationships, as a Hi-C map can be represented as an adjacency matrix of an undirected
graph G ∈ {V,E}. Here, V nodes represent the genomic regions and E edges repre-
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sent their interactions. Our prediction task formulation captures the local and spatial
relationships between the histone marks and gene expression. While some methods use
many other types of features, such as promoter sequences [1, 39], we focus our efforts
solely on histone modifications and extract their relationship to the genes. Even with
this simplified set of features, we show that our model’s performance exceeds that of
certain baseline methods for the gene expression prediction task.

Limitations of GC-MERGE

Although GC-MERGE introduces an effective way to integrate potential enhancer and
repressor epigenetic interactions to better predict gene expression for certain genic regions,
there were a couple significant problems with its task formulation. First of all, in order to
have standardized identification covering all regions of the genome, the genomic regions
in the dataset for GC-MERGE are regularly divided at 10kb intervals. Thus, placement
of an actual gene sequence within this interval could be variable — the gene sequence
could be in the middle of this 10kb interval or it could be at the boundary. If the genic
region is at the boundary and represented by the 10kb interval, significant regulatory
information could be lost coming from epigenetic marks from one side of the genic region
not covered in the 10kb interval. Secondly, GC-MERGE does not optimally extract
epigenetic information from long-range interactions through our graph formulation of a
genic region and its long-range interacting regions. Neighboring nodes’ information is
passed through the network as an average of histone mark levels over their entire 10kb
regions, which may not give us the most information in determining various 10kb regions
that may contribute as enhancers/repressors for regulating gene expression.

1.2.2 XL-MERGE

We develop Xavier Loinaz’s Model of Epigentic Regulation of Gene Expression (XL-
MERGE) as a way of addressing the two mentioned limitations of GC-MERGE. To
account for the issue of gene sequences’ variable location within genomic intervals used
to predict gene expression, we introduce a dataset from Singh et al. [30] that counts
epigenetic marks for certain genes within 5kb of their respective transcription start sites.
By ensuring that the transcription start site is centered within the interval we use to
predict gene expression this reduces variability. Additionally, to better extract neighbor-
ing nodes’ epigenetic information to predict potential long-range enhancer and repressor
interactions, we introduce a convolutional operation with maxpooling in order to extract
important histone mark patterns relative to one another and introduce some positional
invariance for detecting these patterns. This alone leads to significantly improved gene
expression prediction based off neighboring nodes as will be later discussed. The per-
formance metrics of this model are also shown to be better than GC-MERGE by a
statistically significant margin.

1.2.3 Model Interpretation

Another significant contribution of this work is to enable biologists to determine at the
genic level which regulatory interactions – local or distal – most affect the gene’s ex-
pression and which histone marks modulate these interactions. By making the model’s
predictive drivers more transparent, this information can suggest promising hypotheses
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and guide new research directions. To that effect, we perform an interpretation of the GC-
MERGE’s predictions that quantifies the relative importance of the underlying biological
regulatory factors driving each gene’s output. We integrate the GNNExplainer method
[37] within our modeling framework to highlight not only the important node features
(histone modifications) but also the important edges (long-range interactions) that con-
tribute to determining a particular gene’s predicted expression. In this thesis, we apply
our method to the three cell lines from Rao et al. [22] – GM12878 (lymphoblastoid), K562
(myelogenous leukemia), and HUVEC (human umbilical vein endothelial cells). While
solving the gene expression prediction as a regression problem is more valuable for the
community, our interpretation framework required us to formulate it as a classification
task. Therefore, we perform both regression and classification tasks and demonstrate
state-of-the-art performance. Furthermore, we show that our framework allows biologists
to tease apart the cumulative effects of different regulatory mechanisms at the genic level.
Table ?? places the proposed framework among state-of-the-art deep learning models and
lists each model’s properties.
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2. GC-MERGE

This chapter outlines the methods, experimental setup, and results for GC-MERGE, and
it also contains a brief discussion.

2.1 Methods

2.1.1 Graph Convolutional Networks (GCNs)

Graph convolutional networks (GCNs) are a generalization of convolutional neural net-
works (CNNs) to graph-based relational data that is not natively structured in Euclidean
space [18]. Due to the expressive power of graphs, GCNs have been applied across a wide
variety of domains, including recommender systems [12], and social networks [21]. The
prevalence of graph-based datasets in biology has made these models a popular choice
for tasks like modeling protein-protein interactions [36], stem cell differentiation [2], and
chemical reactivity for drug discovery [32].

We use the GraphSAGE formulation [11] as our GCN for its relative simplicity and its
capacity to learn generalizable, inductive representations not limited to a specific graph.
The input to the model is represented as a graph G ∈ {V,E}, with nodes V and edges E,
and a corresponding adjacency matrix A ∈ RN×N [18], where N is the number of nodes.
For each node v, there is also an associated feature vector xv. The goal of the network is
to learn a state embedding hKv ∈ Rd for v, which is obtained by aggregating information
over v’s neighborhood K times. Here, d is the dimension of the embedding vector. This
state embedding is then fed through a fully-connected network to produce an output ŷv,
which can then be applied to downstream classification or regression tasks.

Within this framework, the first step is to initialize each node with its input features.
In our case, the feature vector xv ∈ Rm is obtained from the ChIP-seq signals correspond-
ing to the five (m = 5) core histone marks (H3K4me1, H3K4me3, H3K9me3, H3K36me3,
and H3K27me3) in our dataset:

h0
v = xv (2.1)

Next, to transition from the (k − 1)th layer to the kth hidden layer in the network
for node v, we apply an aggregation function to the neighborhood of each node. This
aggregation function is analogous to a convolution operation over regularly structured
Euclidean data such as images. A standard convolution function operates over a grid and
represents a pixel as a weighted aggregation of its neighboring pixels. Similarly, a graph
convolution performs this operation over the neighbors of a node in a graph. In our case,
the aggregation function calculates the mean of the neighboring node features:

hkN (v) =
∑

u∈N (v)

hk−1u

|N (v)|
(2.2)
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Here, N (v) represents the adjacency set of node v. We update the node’s embed-
ding by concatenating the aggregation with the previous layer’s representation to retain
information from the original embedding. Next, just as done in a standard convolu-
tion operation, we take the matrix product of this concatenated representation with a
learnable weight matrix to complete the weighted aggregation step. Finally, we apply
a non-linear activation function, such as ReLU, to capture the higher-order non-linear
interactions among the features:

hkv = σ
(
Wk

[
hkN (v) || hk−1v

])
,∀k ∈ {1, ..., K} (2.3)

Here, || represents concatenation, σ is a non-linear activation function, and Wk is
a learnable weight parameter. After this step, each node is assigned a new embedding.
After K iterations, the node embedding encodes information from the neighbors that are
K-hops away from that node:

zv = hKv (2.4)

Here, zv is the final node embedding after K iterations. For regression, we feed zv
into a fully connected network and output a prediction ŷv ∈ R, representing a real-valued
expression level. We use the mean squared error (MSE) as the loss function. The model
architecture is summarized in Supplementary Figure A.1.

2.1.2 Interpretation of GC-MERGE

Although a model’s architecture is integral to its performance, just as important is un-
derstanding how the model arrives at its predictions. Neural networks in particular have
sometimes been criticized for being “black box” models, such that no insight is provided
into how the model operates. Most graph-based interpretability approaches either ap-
proximate models with simpler models whose decisions can be used for explanations [23]
or use an attention mechanism to identify relevant features in the input that guide a par-
ticular prediction [35]. In general, these methods, along with gradient-based approaches
[28, 33] or DeepLift [27], focus on the explanation of important node features and do not
incorporate the structural information of the graph. However, a recent method called
Graph Neural Net Explainer (or GNNExplainer) [37], given a trained GCN, can identify
a small subgraph as well as a small subset of features that are crucial for a particular
prediction. The authors demonstrate its interpretation capabilities on simulated and
real-world graphs.

In order to apply this method, the problem must be constructed as a classification
task. Therefore, we feed the learned embedding zv in Equation 2.4 into a fully connected
network and output a prediction ŷv for each target node using a Softmax layer to compute
probabilities for each class c. Here, class c ∈ {0, 1} corresponds to whether the gene is
either off/inactive (c = 0) or on/active (c = 1). We use the true binarized gene expression
value yv ∈ {0, 1} by thresholding the expression level relative to the median as the target
predictions (as done previously [4, 30, 29, 39]), using a negative log-likelihood (NLL) loss
to train the model.

Next, we integrate the GNNExplainer module into our classifier framework. GNNEx-
plainer maximizes the mutual information between the probability distribution of the
model’s class predictions over all nodes and the probability distribution of the class pre-
dictions for a particular node conditioned on some fractional masked subgraph of neigh-
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boring nodes and features. Subject to regularization constraints, it jointly optimizes the
fractional node and feature masks, determining the extent to which each element informs
the prediction for a particular node.

Specifically, given a node v, the goal is to learn a subgraph Gs ⊆ G and a feature
mask Xs = {xj | vj ∈ Gs} that contribute the most to driving the full model’s prediction
of ŷv. To achieve this objective, the algorithm learns a mask that maximizes the mutual
information (MI) between the original model and the masked model. Mathematically,
this objective function is as follows:

max
Gs

MI(Y, (Gs, Xs)) = H(Y )−H(Y | Gs, Xs) (2.5)

where H is the entropy of a distribution. Since this is computationally intractable with
an exponential number of graph masks, GNNExplainer optimizes the following quantity
using gradient descent:

min
M,N
−

C∑
c=1

1{y=c} log(Pφ(Y = y|G = Ac � σ(M), X = Xc � σ(N)) (2.6)

where c represents the class, Ac represents the adjacency matrix of the computation
graph, M represents the subgraph mask, and N represents the feature mask. The impor-
tance scores of the nodes and features are obtained by applying the sigmoid function to
the subgraph and feature masks, respectively. Finally, the element-wise entropies of the
masks are calculated and inserted as regularization terms into the loss function. There-
fore, in the context of our model, GNNExplainer learns which genomic regions (via the
subgraph mask) and which features (via the feature mask) are most important in driving
the model’s predictions.

2.2 Experimental Setup

2.2.1 Overview of Datasets

GC-MERGE requires the following information: (1) Interactions between the genomic
regions (Hi-C contact maps); (2) Histone mark signals representing the regulatory signals
(ChIP-seq measurements); (3) Expression levels for each gene (RNA-seq measurements).
For each gene in a particular region, the first two datasets are the inputs into our proposed
model, whereas gene expression is the predicted target. We formulate the problem as both
regression and classification tasks. We take the base-10 logarithm of the gene expression
values for the regression task, adding a pseudo-count of 1. For the classification task, we
binarize the gene expression values as either 0 (off) or 1 (on) using the median as the
threshold, consistent with previous studies [4, 30, 29, 39]. Constructing a binary classifier
enables us to integrate the GNNExplainer interpretive mechanism with our framework.

We focused on three human cell lines from Rao et al. [22]: (1) GM12878, a lym-
phoblastoid cell line with a normal karyotype, (2) K562, a myelogenous leukemia cell
line, and (3) HUVEC, a human umbilical vein endothelial cell line. For each of these cell
lines, we accessed RNA-seq expression and ChIP-Seq signal datasets for five uniformly
profiled histone marks from the REMC repository [24]. These histone marks include (1)
H3K4me1, associated with enhancer regions; (2) H3K4me3, associated with promoter
regions; (3) H3K9me3, associated with heterochromatin; (4) H3K36me3, associated with
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actively transcribed regions; and (5) H3K27me3, associated with polycomb repression.
We chose these marks because of the wide availability of the relevant data as well as for
ease of comparison with previous studies [30, 29, 39].

2.2.2 Graph Construction and Data Integration

Our main innovation is formulating the graph-based prediction task to integrate two very
different data modalities (histone mark signals and Hi-C interaction frequencies). We
represented each genomic region with a node and connected edges between it and the
nodes corresponding to its neighbors (bins with non-zero entries in the adjacency matrix)
to construct the graph. Due to the large size of the Hi-C graph, we subsampled neighbors
to form a subgraph for each node we fed into the model. While there are methods to
perform subsampling on large graphs using a random node selection approach (e.g., [38]),
we used a simple strategy of selecting the top j neighbors with the highest Hi-C interaction
frequency values. We empirically selected the value j = 10 for the number of neighbors.
A smaller number of neighbors (i.e., j = 5) resulted in decreased performance while
selecting more neighbors proved prohibitive due to memory constraints.

To integrate the Hi-C datasets (preprocessing details in Supplementary Section B)
with the RNA-seq and ChIP-seq datasets, we obtained the average ChIP-seq signal for
each of the five core histone marks over the chromosomal region corresponding to each
node. In this way, a feature vector of length five was associated with each node. For
the RNA-seq data, we took each gene’s transcriptional start site (TSS) and assigned it
to the node corresponding to the chromosomal region in which the TSS is located. We
applied a mask during the training phase so that the model made predictions only on
nodes corresponding to chromosomal regions with genes. If multiple genes were assigned
to the same node, we took the median of the expression levels. We assigned 70% of the
nodes to the training set, 15% to the validation set, and 15% to the testing set. We
provide the details of the hyperparameter tuning in Supplementary Section A.2.

2.2.3 Baseline Models

We compared GC-MERGE with the following deep learning baselines for gene expression
prediction formulated as both regression and classification tasks:
• Multi-layer perceptron (MLP): A simple MLP comprised of three fully-connected

layers. In this framework, the model predictions for each node do not incorporate
feature information from the node’s neighbors.
• Shuffled neighbor model: GC-MERGE applied to shuffled Hi-C matrices, such

that the neighbors of each node are randomized. The shuffled neighbor and MLP
baselines can be viewed as proxies for the importance of including information from
long-range regulatory interactions for similarly processed inputs.
• Convolutional neural network (CNN): A convolutional neural network based

on DeepChrome [30]. This model takes 10 kb regions corresponding to the genomic
regions demarcated in the Hi-C data and subdivides each region into 100 bins. Each
bin is associated with five channels, which correspond to the ChIP-seq signals of
the same five core histone marks in the present study. A standard convolution is
applied to the channels, followed by a fully-connected network.

For the regression task, the range of the outputs is the set of continuous real numbers.
For the classification task, a Softmax function is applied to the models’ output to yield
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Figure 2.1: Model comparison and evaluation. GC-MERGE gives state-of-the-art
performance for the regression task on all three studied cell lines. (a) The Pearson
correlation coefficients (PCC) obtained by running GC-MERGE on each cell line are
displayed. (b) GC-MERGE outperforms all the baseline models for each of the three cell
lines. Scores are calculated as the average of 10 runs and standard deviations are denoted
by error bars.

a binary prediction. For the CNN baseline, genomic regions are subdivided into smaller
100-bp bins, consistent with Singh et al. [30]. However, GC-MERGE and the baselines
other than the CNN average the histone modification signals over the entire 10 kb region.

We also implemented GC-MERGE on higher resolution ChIP-seq datasets (1000-bp
bins), which we fed through a linear embedding module to form features for the Hi-C
nodes. We did not observe an improvement in the performance for the high-resolution
input (Supplementary Figure B.1). Additionally, we compared our results to the pub-
lished results of two other recent deep learning methods, Xpresso by Agarwal et al. [1]
and DeepExpression by Zeng et al. [39], when such comparisons were possible, since in
some cases the experimental data sets were unavailable or the code provided did not run

2.2.4 Evaluation Metrics

We measured the regression task performance of all the models by calculating the Pearson
correlation coefficient (PCC), which quantifies the correlation between the true and pre-
dicted gene expression values in the test set. For interpretation, we adapted our model to
perform classification. Therefore, we also evaluated the classification performance using
two metrics: the area under the receiver operating characteristic curve (AUROC) and
the area under the precision-recall curve (AUPR).
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2.3 Results

2.3.1 Gene Expression Prediction Results

We evaluate GC-MERGE and the baseline models on the regression task for the GM12878,
K562, and HUVEC cell lines. Figure 2.1(a) shows the predicted versus true gene expres-
sion values for GC-MERGE and Figure 2.1(b) compares our model’s performance with the
baselines. Note that we determine the Pearson correlation coefficient (PCC) by taking the
average of ten runs and denote the standard deviation by the error bars on the graph. For
GM12878, the Pearson correlation coefficient of GC-MERGE predictions (PCC = 0.73)
exceeds that of the other baselines. Furthermore, we note that our model performance
also compares favorably to Xpresso (PCC ≈ 0.65) [1], a CNN model that uses promoter
sequence and 8 features associated with mRNA decay to predict gene expression. For
K562, GC-MERGE again outperforms all alternative baseline models (PCC = 0.76). In
addition, GC-MERGE performance also exceeds that of Xpresso (PCC ≈ 0.71) [1] as
well as DeepExpression (PCC = 0.65) [39], a CNN model that uses promoter sequence
data as well as spatial information from H3K27ac and YY1 Hi-ChIP experiments. Our
model gives better performance (PCC = 0.71) for HUVEC as well. Neither Xpresso nor
DeepExpression studied this cell line.

These results strongly suggest that including spatial information can improve gene
expression predictive performance over methods solely using local histone mark features
as input. We emphasize that this prediction task allows us to model the relationships
between the histone marks, 3D structure of the DNA, and gene expression. Therefore, a
good performance indicates that the model can leverage the existing data to learn these
connections. One of our main goals is to extract these relationships from the model and
present GC-MERGE as a hypothesis driving tool for understanding epigenetic regulation.

2.3.2 Interpretation Results

To determine the underlying biological factors driving the model’s predictions, we in-
tegrate the GNNExplainer method, designed for classification tasks, into our modeling
framework. Adapting our GC-MERGE model to the classification task also resulted in
state-of-the-art performance (Supplementary Figure B.2) achieving 0.87, 0.88, and 0.85
AUPR scores for GM12878, K562, and HUVEC, respectively. Once trained, we show
that our classification model can determine which spatial interactions are most critical
to a gene’s expression and the histone marks that are most important. For GM12878,
a lymphoblastoid cell line, we selected four genes: SIDT1, AKR1B1, LAPTM5, and
TOP2B as exemplar genes. These genes are among the most highly expressed genes in
our data set, and they have also been experimentally shown to be controlled by several
long-range promoter-enhancer interactions [13]. To illustrate the validity of our approach,
we perform analyses for each of these genes and corroborate our results using previous
studies from the literature. Supplementary Table B.1 lists the chromosomal coordinates
and corresponding node identifiers for each gene.
• SIDT1 encodes a transmembrane dsRNA-gated channel protein and is part of a

larger family of proteins necessary for systemic RNA interference [7, 20]. This gene
has also been implicated in chemoresistance to the drug gemcitabine in adenocar-
cinoma cells [7] and is regulated by at least three chromosomal regions [13, 20]. In
Figure 2.2(a), we show that for SIDT1, the model makes use of all three genomic re-

15



Figure 2.2: Model explanations for exemplar genes. Top: For (a) SIDT1, desig-
nated as node 60561 (yellow circle), the subgraph of neighbor nodes is displayed. The
size of each neighbor node correlates with its predictive importance as determined by
GNNExplainer. Nodes in red denote regions corresponding to known enhancer regions
regulating SIDT1 [13] (note that multiple interacting fragments can be assigned to each
node, see Supplementary Tables B.1 and B.2). All other nodes are displayed in gray.
Nodes with importance scores corresponding to outliers have been removed for clarity.
Bottom: The scaled feature importance scores for each of the five core histone marks
used in this study are shown in the bar graph. Results also presented for (b) AKR1B1,
(c) LAPTM5, and (d) TOP2B.

gions known to have regulatory effects by assigning high importance scores to those
nodes (indicated by the size of the node). In addition, we plot the importance
scores assigned to the histone marks (node features) that are most important in
driving the model’s predictions. From the bar graph, it is apparent that H3K4me1
and H3K4me3 are the two most important features in determining the model’s
prediction. This histone mark profile has been associated with regions flanking
transcription start sites (TSS) in highly expressed genes [24, 8].
• AKR1B1 encodes an enzyme that belongs to the aldo-keto reductase family. It

has also been identified as a key player in complications associated with diabetes
[5, 20] and is regulated by at least two chromosomal regions [13]. As seen in Figure
2.2(b),the model strongly bases its predictions for AKRB1 on both of the regions
known to have regulatory effects (location information in Supplementary Table B.2).
We also show that H3K36me3 and H3K4me1 are the two histone marks with the
highest scaled importance scores. This chromatin state signature is correlated with
genic enhancers of highly expressed genes [24].
• LAPTM5 encodes a receptor protein that spans the lysosomal membrane [20]. It

is highly expressed in immune cells and plays a role in the downregulation of T
and B cell receptors and the upregulation of macrophage cytokine production [10]
as well as interacts with at least one regulatory sequence [13]. In Figure 2.2(c),
the genomic region corresponding to the node with the highest scaled importance
score has been experimentally shown to interact with LAPTM5 (see Supplementary
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Table B.2) [13] and its histone mark profile is characteristic of genic enhancers [8].
• TOP2B encodes DNA topoisomerase II beta, a protein that controls the topological

state of DNA during transcription and replication [20]. It transiently breaks and
then reforms duplex DNA, relieving torsional stress. Mutations in this enzyme can
lead to B cell immunodeficiency [3] and it has been shown to interact with at least
two regulatory regions [13]. Figure 2.2(d) shows that the most important neighbor
node has been corrobrated by experiments to have a regulatory role for that gene
[13] and its histone mark profile is indicative of regions flanking TSS [8].

To confirm that the node importance scores obtained from GNNExplainer do not
merely reflect the relative magnitudes of the Hi-C counts or the distances between genomic
regions, we investigated the relationships among the Hi-C counts, genomic distances, and
scaled importance scores for all four exemplar genes (Supplementary Figures B.3 – B.6).
We observe that the scaled importance scores do not correspond to the Hi-C counts or the
pairwise genomic distances. For example, for SIDT1, the three experimentally validated
interacting nodes achieve the highest importance scores (10, 9.55, and 7.73). However,
they do not correspond to the regions with the highest Hi-C counts (154.78, 412.53, and
170.55 for each of the three known regulatory regions while the highest count is 602.84).
In addition, although they are close to the SIDT1 gene region (40, 20, and 30 kbp away),
there are other nodes at the same or closer distances that do not have promoter-enhancer
interactions. Therefore, we show that by modeling the histone modifications and the
spatial configuration of the genome, GC-MERGE infers connections that could serve as
important hypothesis-driving observations for gene regulatory experiments.

2.4 Discussion

We present GC-MERGE, a graph-based deep learning model, which integrates both local
and long-range epigenetic data using a graph convolutional network framework to predict
gene expression and explain its drivers. We demonstrate its state-of-the-art performance
for the gene expression prediction task, outperforming the baselines on the GM12878,
K562, and HUVEC cell lines. We also determine the relative contributions of histone
modifications and long-range interactions for four highly expressed genes, showing that
our model recapitulates known experimental results in a biologically interpretable man-
ner.

With respect to potential future work for GC-MERGE, our framework can be applied
on additional cell lines as high-quality Hi-C data sets become available. Incorporating
other features, such as promoter sequence, would also be natural extensions. One avenue
of particular importance would be to develop more robust methods for interpreting GCNs.
For example, while the GNNExplainer model is a theoretically sound framework and
yields an unbiased estimator for the importance scores of the subgraph nodes and features,
there is variation in the interpretation scores generated over multiple runs. Furthermore,
with larger GCNs, the optimization function utilized in GNNExplainer is challenging to
minimize in practice. For some iterations, the importance scores converge with little
differentiation and the method fails to arrive at a compact representation. This may be
due to the relatively small penalties the method applies with respect to constraining the
optimal size of the mask and the entropy of the distribution. We plan to address this
issue in the future by implementing more robust forms of regularization.

In summary, GC-MERGE demonstrates proof-of-principle for using GCNs to predict
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gene expression using both local epigenetic features and long-range spatial interactions.
Interpretation of this model allows us to propose plausible biological explanations of
the key regulatory factors driving gene expression as well as provide guidance regarding
promising hypotheses and new research directions.
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3. XL-MERGE

This chapter outlines the methods, experimental setup, and results for XL-MERGE, and
it also contains a brief discussion.

3.1 Methods

3.1.1 Model Architecture

XL-MERGE has a similar architecture to GC-MERGE in that it is also a GraphSAGE-
formulated graph convolutional network, the mathematical formulation for which is de-
scribed in the GC-MERGE chapter, but its main differences have to do with pre-embeddings
that are created to give better representations of the nodes within our graph formulation,
as well as pre-embeddings to better represent genic regions. A schematic of XL-MERGE
is shown in Figure C.1.

Better Representation for Genic Regions

One of the drawbacks of GC-MERGE was that in its formulation the 10kb genic regions
it was using to predict gene expression were not necessarily centered around the gene’s
respective TSS (transcription start site). For XL-MERGE, we attempt to avoid this
problem through integrating a new dataset where histone mark data is centered around
each TSS. This can be obtained through the dataset used from Singh et al. [30]. Addi-
tionally, rather than just taking the average of each histone mark across the entire 10kb
region as in GC-MERGE, we pass more granular data from the 10kb region (100 bins of
100-base pair regions within the entire 10kb region) into a convolutional layer followed
by maxpooling, nonlinear activation, and another linear layer. This serves to capture
potential histone mark patterns within the region that could help drive gene expression,
and also passes on higher dimensional information for downstream portions of our model
than GC-MERGE, perhaps giving greater insight into gene regulation mechanisms.

Better Representation for Neighboring Nodes

Another limitation from GC-MERGE that we seek to improve upon is the capture of
relevant histone mark information that could affect long-range interaction between genic
regions and potential enhancer/repressor regions. GC-MERGE has a rather simplistic
formulation in this respect, since it only takes the average normalized histone mark counts
across the entire 10kb region. There are notable issues with this. First of all, we have no
way of knowing where along the 10kb long-range regulatory region there is some sort of
interaction with the genic region. It could easily be a small portion of this 10kb region,
and we would not know where along this region that portion is located. Additionally,
assuming that the enhancer/repressor interaction only takes place within a portion of
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this 10kb region, by averaging histone mark data across the entire region we introduce
significant random noise in our capture, since the histone marks outside of this interacting
fragment likely have little to do with regulation of our genic region.

To get around these issues, we can apply a convolutional layer on the 10kb region for
each of the neighboring node regions to a particular genic node followed by maxpooling
and a nonlinear activation. The convolutional layer seeks to capture certain histone
mark patterns within these neighboring node regions that can be relevant for long-range
regulation, and the maxpooling gives a degree of positional invariance such that the model
is more agnostic to where a certain interacting portion may be located. Therefore, we
can gain better capture of potential regulatory interaction motifs for histone marks while
also being more discriminatory and filtering out noise from that which we use to find
these interactions.

3.2 Experimental Setup

3.2.1 Overview of Datasets and Data Integration

Most of the datasets used for XL-MERGE are covered in section 2.2.1, and their in-
tegration is covered in 2.2.2. XL-MERGE uses the same datasets as GC-MERGE and
integrates them similarly. One of the additional datasets XL-MERGE uses, however is
from Singh et al. [30]. This dataset contains histone mark counts in bins of 100 base
pairs along each TSS-centered 10kb region via ChIP-Seq experiments for all 5 of the his-
tone marks used in GC-MERGE, along with the corresponding gene catalog ID from the
REMC database. Using the gene catalog ID we could map corresponding genic regions to
those in GC-MERGE, allowing us to have a TSS-centered representation of genic nodes
integrated into our dataset.

Another discrepancy from the GC-MERGE dataset is that feature vectors for each
node in the graph were represented differently. Instead of getting the average ChIP-seq
signal for each of the 5 core histone marks over the chromosomal region corresponding to
each node, the representation was changed to getting the average ChIP-seq signal for each
of the 5 core histone marks across each 100 base-pair region along the entire chromosomal
region corresponding to the node. This gave 100 bins of the 5 histone marks along each
region, making it possible to apply a one-dimensional convolution on each node as referred
to earlier.

3.2.2 Baseline Models

In addition to some of the baseline methods run for GC-MERGE (multi-layer perceptron
and convolutional neural network), as well as GC-MERGE itself, we were able to run
another baseline that was not done for GC-MERGE which provide more evidence for XL-
MERGE’s efficacy for predicting gene expression and the potential successful integration
of long-range interactions within the genome to drive this more efficacious prediction.
This baseline was:
• AttentiveChrome [29]: A long short-term memory-based model with attention

mechanisms to capture longer-range histone mark dependencies within a genic re-
gion and assign appropriate weightings to certain regions within the region. Out
of deep learning models we are aware of in the field that are used to predict gene
expression from strictly histone marks, AttentiveChrome appears to have the best
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predictive power in terms of AUROC (Area Under the Receiver Operating Charac-
teristics). AttentiveChrome even outperforms GC-MERGE by a fair margin. We
also ensured that we used the same train-validation-test split for AttentiveChrome
as for XL-MERGE when comparing the performance of the two.

Unfortunately, due to time constraints, there have not yet been any regression results
run for XL-MERGE. Thus, unlike for GC-MERGE, we are not currently able to directly
compare it to Xpresso [1] and DeepExpression [39], since these models only gave results
as regression tasks.

3.2.3 Model Ablation Analyses

We also performed a set of model ablation analyses for XL-MERGE, where we zero out
the features of an entire portion of our model in order to obtain a more precise analysis of
whether or not we capture long-range interactions effectively. For our ablation analysis,
we end up zeroing out the TSS-centered local embedding representation for a given gene,
such that the predictive power of the model comes purely from neighboring nodes in our
graph formulation for that gene. Since in this ablated model the predictive power comes
solely from potential long-range interacting nodes, this gives us a less noisy indication as
to whether or not these long-range interactions are captured well relative to baselines,
rather than having these differences be crowded out by the local genic region driving
prediction. The ablation analyses we ended up running were:
• Standard XL-MERGE ablation: This was just running our standard XL-

MERGE model with the TSS-centered genic node embeddings zeroed out such that
genic region information does not contribute to gene expression prediction. Only
long-range embedding information should therefore contribute to gene expression
prediction.
• Ablation of XL-MERGE using two-layer perceptrons: This was an abla-

tion of TSS-centered genic node embeddings except where we slightly modified
the mechanism through which we extract information from long-range neighboring
nodes. Instead of using a convolution layer followed by maxpooling as in the tra-
ditional XL-MERGE model, we use a two-layer perceptron instead. This allows us
to compare different mechanisms for which we extract information from long-range
interactions.
• Ablation of XL-MERGE without convolution or multi-layer perceptrons:

This was an ablation of TSS-centered genic node embeddings except there is no
specific extraction mechanism for the information of long-range neighboring nodes.
That is, we propagate the original normalized histone marks counts through our
graph formulation, using that to predict gene expression from neighboring nodes.
This provides a null sort of baseline for other ways through which we extract neigh-
boring node gene regulation information.
• Ablation of XL-MERGE with shuffled neighboring nodes: Here we run XL-

MERGE with the TSS-centered genic node embeddings zeroed out, but in addition
to this we shuffle the long-range neighbors corresponding to each genic region.
Thus, this can give us insight into whether XL-MERGE utilizes its true neighboring
nodes to help drive gene expression prediction with potential regulatory interactions
relative to random nodes being used instead.
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3.2.4 Evaluation Metrics

Up to this point, XL-MERGE has only been formulated as a binary prediction task,
so therefore it is evaluated using the same two classification metrics that were used for
GC-MERGE: the area under the receiver operating characteristic curve (AUROC) and
the area under the precision-recall curve (AUPR).

3.3 Results

3.3.1 Gene Expression Prediction Results

We evaluate XL-MERGE and the baseline models on the binary classification task for
the GM12878, K562, and HUVEC cell lines. Runs for XL-MERGE and each baseline for
each cell line were performed 10 times each. Then, we could find the averages across each
of these 10 runs. Figure C.2 shows the relative AUROC and AUPR scores computed for
XL-MERGE and baselines with a brief analysis, and Figure C.4 shows numerical values
for reference.

The results suggest that XL-MERGE is state-of-the-art for binarily predicting gene
expression, and that XL-MERGE handily outperforms GC-MERGE in terms of binary
gene classification prediction.

3.3.2 Model Ablation Results

We also perform model ablation analyses for XL-MERGE that were described in section
3.2.3. These analyses were each done for the GM12878, K562, and HUVEC cell lines for
10 times for each cell line, and the average AUROC and AUPR scores could be computed
across each of these 10 runs. These relative scores are shown in Figure C.3, and Figure
C.4 shows actual numerical values for reference.

From these results, it seems that using a convolutional layer along with maxpooling
to extract potential long-range interaction information is superior to using a multi-layer
perceptron or not using any extraction mechanism at all. This superior performance
might suggest that the convolutional neighbor aggregation mechanism is advantageous
due its being positionally agnostic to where certain motifs may occur along a potential
long-range interaction fragment, and also that the information extracted is less noisy.

There is also strong evidence that XL-MERGE indeed makes use of its potential long-
range interacting fragments in its graph construction to drive gene expression prediction,
suggesting that it properly incorporates these long-range regulation interactions in its
model. The XL-MERGE genic node embedding-ablated model significantly outperforms
the genic node embedding-ablated model when neighboring nodes in the graph for a
given genic node are shuffled with other random nodes in the graph. Additionally, when
neighbors are shuffled in the ablated model, AUROC scores are close to 0.5, suggesting
prediction power similar to random guessing when node neighbors are shuffled from the
original graph formulation.
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3.4 Discussion

Overall, XL-MERGE seems to act as a state-of-the art model for predicting binary gene
expression from histone marks. It provides strong evidence for incorporating long-range
regulatory epigenetic interactions to help drive gene expression prediction, thus suggest-
ing the model can potentially identify enhancer/repressor regions. However, this still
significant work to further be done to make XL-MERGE more biologically useful as well
as comparable to other models, and to improve its robustness.

3.4.1 Adding Interpretability for XL-MERGE

For XL-MERGE, we have yet to add any interpretation angle for analyzing how XL-
MERGE makes its predictions, which is critical to make XL-MERGE biologically relevant
and useful. For GC-MERGE, we used GNNExplainer, and while it could be good to
use GNNExplainer for XL-MERGE, there may be better options. GNNExplainer is
computationally useful because it can generate subgraphs most relevant to driving graph
neural network predictions in a computationally tractable fashion, but for XL-MERGE
only node information one hop away is actually used in predicting gene expression for
a particular genic node. Therefore, since we construct our graph such that edges are
formed with only the 10 most relevant long-range interacting genomic regions (nodes),
there are not a computationally intractable amount of subgraphs or neighboring node
combinations that would need to be tested for driving gene expression to generate the
most relevant explanation. A simpler, less abstracted method than GNNExplainer, where
say we just look at all possible subgraphs for a particular node, might work better because
GNNExplainer is commonly known throughout the deep learning community to have
issues with generating consistent explanations. This overall presents possible directions
for interpretability methods for XL-MERGE that would be advantageous to that of GC-
MERGE.

3.4.2 Regression Task Results for XL-MERGE

Another set of results to be added for XL-MERGE would be gene expression prediction
regression results. This would make XL-MERGE able to be comparable to other meth-
ods, such as Xpresso and DeepExpression, and it would also give XL-MERGE a more
information-rich representation for gene expression prediction, rather than just a binary
indicator. Additionally, with the regression formulation, downstream analyses can take
place for genes that are most highly predicted for expression, or genes that are most
highly predicted for no expression.

3.4.3 Normalizing Genic Region Input Data

Another important adjustment that should be made to XL-MERGE involves normalizing
the histone mark data for TSS-centered genic regions that is inputted into the model. As
of right now, the histone mark data for the genic regions is not normalized in the same
way that the histone mark data for long-range interacting regions is. The histone mark
data values for the genic regions tend to be higher, thus potentially making XL-MERGE
more biased toward the genic region histone mark data. For the future, this issue should
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be resolved, and it will perhaps leads to greater influence over gene expression coming
from long-range regulatory interactions.

3.4.4 Different Training Rates for Different Parts of the Model

One thing noticed while performing the model ablation analyses of XL-MERGE was that
it would take the entire model an apparently shorter time to train than it would during the
model ablation analyses. This implies that XL-MERGE takes longer to learn meaningful
extractions from long-range interacting regions in the model than it does for the genic
regions. In order to best learn from both the genic regions and long-range interacting
regions, going forward it may be better to train different parts of the model with different
learning rates, or to perhaps ablate one portion of the model during an earlier portion of
training as to let the other parts of the model learn their representations first. Thus, all
parts of the XL-MERGE model could be used together optimally to better predict gene
expresion.
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A. GC-MERGE Model Details

A.1 Model architecture and training

The model architecture is represented in Figure A.1. Here, the first layer of the model
performs a graph convolution on the initial feature embeddings with an output embedding
size of 256, followed by application of ReLU, a non-linear activation function. The second
layer of the model performs another graph convolution with the same embedding size of
256 on the transformed representations, again followed by application of ReLU. Next,
the output is fed into three successive linear layers of sizes 256, 256, and 2, respectively.
A regularization step is performed by using a dropout layer with probability 0.5. The
model was trained using ADAM, a stochastic gradient descent algorithm [15]. We used
the PyTorch Geometric package [9] to implement our code.

A.2 Hyperparameter tuning

Table C.1 details the hyperparameters and the range of values we used to conduct a grid
search to determine the optimized model. Specifically, we varied the number of graph
convolutional layers, number of linear layers, embedding size for graph convolutional lay-
ers, linear layer sizes, and inclusion (or exclusion) of an activation function after the graph
convolutional layers. Through earlier iterations of hyperparameter tuning, we also tested
the number of neighbors for each node (5 or 10), type of activation functions used for the
linear layers of the model (ReLU, LeakyReLU, sigmoid, or tanh), method for account-
ing for background Hi-C counts, as well as dropout probabilities. Some combinations of
hyperparameters were omitted from our grid search because the corresponding model’s
memory requirements did not fit on the NVIDIA Titan RTX and Quadro RTX GPUs
available to us on Brown University’s Center for Computation and Visualization (CCV)
computing cluster. We recorded the loss curves for the training and validation sets over
1000 epochs, by which time the model began to overfit. In addition, the data was split
into sets of 70% for training, 15% for validation, and 15% for testing. The optimal hy-
perparameters for our final model that also proved to be computationally feasible are as
follows: 2 graph convolutional layers, 3 linear layers, graph convolutional layer embedding
size of 256, linear layer sizes that match that of the graph convolutional layers, and using
an activation function (ReLU) after all graph convolutional layers and all linear layers
except for the last.
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Figure A.1: Overview of the GCNN model architecture. The datasets used in our
model are Hi-C maps, ChIP-seq signals, and RNA-seq counts. A binarized adjacency
matrix is produced from the Hi-C maps by subsampling from the Hi-C matrix, such
that only the top 10 neighbors of each node are preserved. The nodes in the graph
are annotated with features from the ChIP-seq datasets. Two graph convolutions, each
followed by ReLU, are performed. The output is fed into a dropout layer (probability =
0.5), followed by a linear module comprised of three dense layers, in which the first two
layers are followed by ReLU. For the regression model, the final output represents the
base-10 logarithm of the expression level (with a pseudocount of 1). For the classification
model, the output is fed through a Softmax layer and then the argmax is taken to make
the final prediction.

Hyperparameter Values
Number of graph convolutional layers 1, 2
Number of linear layers 1, 2, 3
Graph convolutional layer embedding sizes 64, 128, 256, 384
Linear layer sizes Keep sizes of all linear layers constant;

alternatively, for each subsequent layer, divide size by 2
Activation function after graph convolutional layers Include; alternatively, do not include

Table A.1: Hyperparameter combinations used for tuning in grid search. A
grid search was conducted by varying the following hyperparameters: number of graph
convolutional layers, number of linear layers, embedding size for graph convolutional
layers, linear layer sizes, and inclusion/exclusion of activation function after the graph
convolutional layers.
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B. GC-MERGE Additional Dataset
Details and Results

For chromosome capture data, we used previously published Hi-C maps at 10 kilobase
(kb) resolution for all 22 autosomal chromosomes [22]. We obtained an N x N symmetric
matrix, where each row or column corresponds to a 10 kb chromosomal region. Therefore,
each bin coordinate (row, column) corresponds to the interaction frequency between
two respective genomic regions. We applied VC-normalization on the Hi-C maps. In
addition, because chromosomal regions located closer together will contact each other
more frequently than regions located farther away simply due to chance (rather than due
to biologically significant effects), we made an additional adjustment for this background
effect. Following Sobhy et al. [31], we took the medians of the Hi-C counts for all pairs
of interacting regions located the same distance away and used this as a proxy for the
background. We subtracted the appropriate median from each Hi-C bin and discarded
negative values.

Figure B.1: Comparison of fine-grained versus coarse-grained ChIP-seq signals
for use in GC-MERGE. For the coarse-grained resolution, ChIP-seq signals were av-
eraged over the entire Hi-C bin (10000 bp resolution). For the fine-grained resolution,
ChIP-seq signals were first averaged over 1000 bp bins and then fed into two embedding
linear layers followed by ReLU. The output of these embedding layers was then was used
to feature annotate each node. (a) For the regression task, the fine-grained resolution
ChIP-seq data produces performance worse than or comparable to the coarse-grained
resolution ChIP-seq data as measured by PCC. (b) For the classification task, the fine-
grained resolution ChIP-seq data performs slightly worse than or comparable to that of
the coarse-grained resolution ChIP-seq data as measured by AUROC.
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Gene Node Identifier Node Coordinates Gene Coordinates
SIDT1 60561 chr3:113249241-113259241 chr3:113532296-113629579
AKR1B1 136736 chr7:134253323-134263323 chr7:134127127-134144036
LAPTM5 3123 chr1:31230000-31240000 chr3:31205316-31230667
TOP2B 51806 chr3:25699241-25709241 chr3:25639475-25706398

Table B.1: Node coordinates for all exemplar genes: SIDT1, AKR1B1,
LAPTM5, and TOP2B. For each gene, the second and third columns list the cor-
responding node identifiers and the chromosome coordinates, respectively. The fourth
column lists the gene’s actual chromosomal coordinates. Note that the transcription
start site was used as the basis for assigning each gene to a node.

33



Figure B.2: Comparison of AUROC and AUPR scores for GC-MERGE and its
associated baselines. GC-MERGE gives state-of-the-art performance for classifying
genes as on/active or off/inactive. (a) The AUROC metrics for GM12878, K562, and
HUVEC were 0.893, 0.910, and 0.880, respectively. For each of these cell lines, GC-
MERGE performance exceeded all other baselines. (b) Using the AUPR metric, GC-
MERGE obtains scores of 0.865, 0.884, and 0.848 for GM12878, K562, and HUVEC,
respectively. As with the AUROC metric, our model’s performance was the highest
among the baselines. Additionally, our AUROC score for K562 (0.91) is comparable to
that reported by Zeng et al. [39] (0.91). We could not compare scores for the other two
cell lines as they do not provide Hi-ChIP data for the cell line to run their model.
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Gene Neighbor Node Identifier Neighbor Node Coordinates Interacting Fragment Coordinates

SIDT1

60557 chr3:113209241-113219241 chr3:113251143-113348425
60558 chr3:113219241-113229241 chr3:113228501-113232053
60559 chr3:113229241-113239241 chr3:113228501-113232053
60560 chr3:113239241-113249241
60562 chr3:113259241-113269241
60563 chr3:113269241-113279241
60564 chr3:113279241-113289241
60565 chr3:113289241-113299241
60566 chr3:113299241-113309241

AKR1B1

136738 chr7:134273323-134283323
136739 chr7:134283323-134293323 chr7:134293046-134298798
136740 chr7:134293323-134303323 chr7:134293046-134298798
136741 chr7:134303323-134313323
136744 chr7:134333323-134343323
136745 chr7:134343323-134353323
136746 chr7:134353323-134363323
136747 chr7:134363323-134373323
136750 chr7:134393323-134403323
136751 chr7:134403323-134413323

LAPTM5

3119 chr1:31190000-31200000
3120 chr1:31200000-31210000
3121 chr1:31210000-31220000
3122 chr1:31220000-31230000
3137 chr1:31370000-31380000
3138 chr1:31380000-31390000
3139 chr1:31390000-31400000
3140 chr1:31400000-31410000 chr1:31401583-31405576

TOP2B

51811 chr3:25749241-25759241
51815 chr3:25789241-25799241
51816 chr3:25799241-25809241
51817 chr3:25809241-25819241
51820 chr3:25839241-25849241
51821 chr3:25849241-25859241
51823 chr3:25869241-25879241 chr3:25878006-25881223
51825 chr3:25889241-25899241
51826 chr3:25899241-25909241
51827 chr3:25909241-25919241

Table B.2: Neighbor coordinates for SIDT1, AKR1B1, LAPTM5, and TOP2B.
The second column lists the node identifiers for all neighboring nodes of the relevant gene,
including neighboring nodes that contain interacting fragments as well as those that do
not. The third column third lists the corresponding chromosome coordinates for the node
identifier. The fourth column lists the regulatory fragments that interact with each gene
as described in Jung et al. [13].
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Figure B.3: Relationships among scaled importance scores, genomic distances,
and Hi-C counts for all SIDT1 neighbors. Nodes corresponding to experimentally
validated interacting fragments are denoted in red and all others are denoted in blue.
(a) Scaled importance score versus experimental interaction. Experimentally validated
interacting fragments are ranked higher on average than non-interacting fragments. (b)
Hi-C counts versus experimental interaction. Hi-C counts by themselves are not sufficient
to explain the presence of experimentally validated interactions. (c) Genomic distance
versus experimental interaction. Genomic distance does not correlate with experimentally
validated interactions. (d) 3D plot displaying the relationships among scaled importance
scores, genomic distances, and Hi-C counts.

36



Figure B.4: Relationships among scaled importance scores, genomic distances,
and Hi-C counts for all AKR1B1 neighbors. Nodes corresponding to experimentally
validated interacting fragments are denoted in red and all others are denoted in blue.
(a) Scaled importance score versus experimental interaction. Experimentally validated
interacting fragments are ranked higher on average than non-interacting fragments. (b)
Hi-C counts versus experimental interaction. Hi-C counts by themselves are not sufficient
to explain the presence of experimentally validated interactions. (c) Genomic distance
versus experimental interaction. Genomic distance does not correlate with experimentally
validated interactions. (d) 3D plot displaying the relationships among scaled importance
scores, genomic distances, and Hi-C counts.
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Figure B.5: Relationships among scaled importance scores, genomic distances,
and Hi-C counts for all LAPTM5 neighbors. Nodes corresponding to experimen-
tally validated interacting fragments are denoted in red and all others are denoted in blue.
(a) Scaled importance score versus experimental interaction. Experimentally validated
interacting fragments are ranked higher on average than non-interacting fragments. (b)
Hi-C counts versus experimental interaction. Hi-C counts by themselves are not sufficient
to explain the presence of experimentally validated interactions. (c) Genomic distance
versus experimental interaction. Genomic distance does not correlate with experimentally
validated interactions. (d) 3D plot displaying the relationships among scaled importance
scores, genomic distances, and Hi-C counts.
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Figure B.6: Relationships among scaled importance scores, genomic distances,
and Hi-C counts for all TOP2B neighbors. Nodes corresponding to experimentally
validated interacting fragments are denoted in red and all others are denoted in blue.
(a) Scaled importance score versus experimental interaction. Experimentally validated
interacting fragments are ranked higher on average than non-interacting fragments. (b)
Hi-C counts versus experimental interaction. Hi-C counts by themselves are not sufficient
to explain the presence of experimentally validated interactions. (c) Genomic distance
versus experimental interaction. Genomic distance does not correlate with experimentally
validated interactions. (d) 3D plot displaying the relationships among scaled importance
scores, genomic distances, and Hi-C counts.
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C. XL-MERGE Model Details and
Results
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Hyperparameter Values
Number of output channels 10, 20, 30
Stride length 1, 2, 5
Kernel size 5, 10, 20
Maxpool size 5, 10

Table C.1: Hyperparameter combinations used for tuning in grid search for
long-range node neighbor convolutional mechanism. A grid search was conducted
by varying the following hyperparameters for the neighboring nodes convolution opera-
tion: number of ouput channels, stride length, kernel size, maxpool size. Some of these
combinations were not able to be tested due to memory constraints.

41



Figure C.1: Schematic of the architecture of XL-MERGE. XL-MERGE is similar
in architecture to GC-MERGE, but its main differences have to do with the formation
of pre-embeddings to better represent genic regions and the long-range interacting nodes
of the graph. Convolution followed by maxpooling, nonlinear activation, and a linear
layer is applied to the TSS-centered genic region data to create a better representation.
For the long-range interacting regions in the graph, convolution followed by nonlinear
activation and maxpooling is used to extract more positionally-agnostic, less noisy data
from various nodes of the graph.
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Figure C.2: Comparison of AUROC and AUPR scores for XL-MERGE and its
associated baselines. XL-MERGE gives evidence that it is a state-of-the-art model
for binarily predicting gene expression from histone marks. It also comfortably outper-
forms GC-MERGE both in terms of AUROC and AUPR. (a) The AUROC metrics for
GM12878, K562, and HUVEC were 0.919, 0.932, and 0.910, respectively, which either
were tied or were higher than all other baselines run. Additionally, across all three cell
lines, XL-MERGE outperforms GC-MERGE by more than 0.02 in terms of AUROC.
(b) Using the AUPR metric, XL-MERGE obtains scores of 0.905, 0.912, and 0.881 for
GM12878, K562, and HUVEC, respectively. These scores outperform all the other base-
lines for each cell line, except for AttentiveChrome for GM12878, which scored 0.921.
Also, across all three cell lines, XL-MERGE outperforms GC-MERGE by at least 0.028
in terms of AUPR.
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Figure C.3: Comparison of AUROC and AUPR scores for XL-MERGE with
ablated genic node embeddings and associated baselines. The convolutional
mechanism with maxpooling for extracting information from long-range interacting re-
gions seems to be superior than other baselines. Additionally, when long-range interacting
neighboring nodes are shuffled, it reults in a severe drop-off in importance, strongly sug-
gesting that XL-MERGE successfully integrates long-range interaction information to
drive superior gene expression predictions. (a) XL-MERGE with genic node embeddings
ablated achieved AUROC scores of 0.782, 0.764, and 0.755 for GM12878, K562, and
HUVEC, respectively, and these scores outperform all other respective baselines. Most
notably, when the neighbors of genic nodes are shuffled, it results in AUROC scores from
0.5 to 0.51 on average, suggesting prediction little better than random guessing. Thus,
our graph construction with significant Hi-C interactions selected for is important for
driving gene expression prediction. (b) XL-MERGE with genic node embeddings ab-
lated achieved AUPR scores of 0.718, 0.691, and 0.691 for GM12878, K562, and HUVEC,
respectively, and these scores were superior to all other baselines.
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Figure C.4: Comparison of AUROC and AUPR scores for XL-MERGE with
ablated genic node embeddings and associated baselines. For reference, here is
a table of all the performance metric evaluations for Figures C.1 and C.2. Remember
that each row represents a different kind of model modification or baseline, and that for
each model modification or baseline 10 runs were performed. The numbers listed are the
average metric values obtained over those 10 runs.
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