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1 Abstract

The early and accurate diagnosis of neonatal intracranial hypertension (NICH)
is clinical challenge, due to the lack of clinical symptoms in infants. Accurate
diagnosis methods are invasive and involve some risk. Previous studies have
shown that NICH may lead to specific clinical, morphological changes in the
brain that can be detected through MRI scans.

Thus, there is need to develop data-driven, non-invasive methods to diagnosis
NICH based upon MRI scans. Studies that apply machine learning to clinical
imaging data are often hampered by the large number voxels and low number
of subjects, known as the small-n-large-p problem. Feature reduction is vital
step before training a machine learning model to mitigate the small-n-large-p
problem.

In this study, we develop and evaluate the performance a deep learning-
based autoencoder to feature reduce our data before applying machine learning
meodels. We compare its performance to other popular feature reduction meth-
ods such as principal component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE).

2 Introduction

Elevated intracranial pressure (ICP), or intracranial hypertension, is a serious
threat to the health of neonates, infants less than four weeks old. It is often
caused by hypoxic-ischemic encephalopathy, bacterial meningitis or neonatal
hypoglycemia [1]. The annual pediatric incidence of ICH is approximately 0.63
per 100,000 children [2]. Neonatal intracranial hypertension (NICH) can lead
to negatively affect the neurological development of a child, impacting their
long-term quality of life. More severe cases of NICH may compromise cerebral
perfusion pressure and leading to herniation syndromes and death[3]. Thus, the



early detection of NICH is one of the keys to reducing neurological complications
in neonates.

However, the diagnosis of NICH is quite difficult due to lack of clinical symp-
toms in infants[4-5]. To accurately measure intracranial pressure and correctly
diagnose neonatal intracranial hypertension, a lumbar puncture procedure must
be carried out. However, this procedure is invasive, and has a risk of hemorrhage
and infection in infants. Thus, there is an urgent need to develop a non-invasive
technology to detect neonatal intracranial hypertension.

Thus, developing a data-driven approach to predict NICH from MRI scans
of neonates can be a promising direction towards non-invasively diagnosing in-
fants in a timely manner. The application of machine learning techniques to
clinical imaging data is increasingly being used in making relevant predictions
on the individual patient level[6]. However, these clinical imaging studies are
commonly hampered by the large number of features and a low number of ob-
servations, known as the small-n-large-p problem. To mitigate this problem,
feature reduction is essential before applying of machine learning classifiers to
clinical imaging data.

We propose using an autoencoder to feature reduce neuroimaging data from
a 3D MRI scan. Unlike previous methods, such as PCA and t-SNE, an autoen-
coder is neural network-based feature reduction method. Therefore, it is able to
to create a lower-dimensional representation of our data in a non-linear fashion.
Thus, it may be able to capture the complexities of our 3D MRI imaging data
more accurately.

3 Related Work

The recent development in MRI scans provides a way to obtain a precise quan-
titative assessment in disease prediction. However, their usability for accurate
diagnosis of neonatal intracranial hypertension is yet to be seen.

Conventional imaging studies have been been previously conducted to iden-
tify intracranial hypertension in the adult population. These studies have shown
that increased intracranial hypertension may lead to specific clinical, morpholog-
ical changes in the brain that may be detected using non-invasive measurements
like MRI scans. For instance, increased ICP may lead to changes of the ven-
tricular system, optic nerve sheath diameter and pituitary gland[7-9]. However,
the changes in these areas are usually secondary and are susceptible to the sub-
jective experience and interobserver variability. Additionally, mild ICH doesn’t
cause morphological changes, so the application of these studies is limited.

More advanced studies have developed an algorithm to estimate ICP and
diagnose ICH using cerebral blood flow[10]. Other groups have proposed pre-
dicting ICH by considering brain volume, cerebral spinal fluid, and cerebral
blood flow. However, as these studies have predetermined features for ICH
prediction, they may be missing out on other signs of intracranial hyperten-
sion. A machine learning approach is data-driven, and does not rely on domain
knowledge. Thus, this methodology provide us with a non-invasive technology



to evaluate the MRI scan in its entirety in order to diagnose NICH early and
accurately.

Studies that apply machine learning methods to clinical imaging data, in-
cluding ours, are commonly hampered by the large number features (number
of voxels in 3D MRI scan) and low number of subjects, known as the small-
n-large-p problem or the curse of dimensionality. Feature reduction is a vital
step before training a machine learning model. It mitigates the small-n-large-p
problem, thereby avoiding overfitting and improving model prediction accuracy
and generalization ability[6].

As discussed in a review article by Mwangi and his colleagues, in the field of
neuroimaging, the most common methods of unsupervised feature reduction are
principal component analysis and independent component analysis. Principal
component analysis (PCA) can only learn linear transformation of the features.
Therefore, it may not always capture the non-linear complexities that underly
the features in clinical imaging data.

As the field of deep learning has expanded over the past few years, deep
learning techniques are now able to be applied to feature reduction problems.
The autoencoder is a neural network based technique that compresses high-
dimensionality data into a low-diemsionality space, and then reconstructs the
data back into the high-dimensionality space. Thus, the compressed feature
space, called the bottleneck or latent space, contains a feature-reduced version
of the input data. By extracting the data in the bottleneck space, we are
essentially extracting a low-dimensionality representation of our data that was
created in a non-linear fashion.

4 Methods

4.1 Imaging Data

Our data was obtained by collaborators at the Xiangya Hospital of Central
South University, a Class-A Grade-3 general hospital located in Changsha, Hu-
nan, China. The data was collected with the approval of the institutional ethics
committee of the hospital. The Rhode Island Hospital institutional review board
determined this project did not constitute as human subject research, as we re-
ceived external, deidentified data.

Magnetic resonance imaging scans of the head were carried out on 85 neona-
tal patients from January 2017 to December 2019. MRI scans were conducted
with the 3.0 T Siemens Prisma Human MRI scanner. Among those patients,
58 patients were diagnosed with neonatal intracranial hypertension (NICH),
and 38 diagnosed to not have NICH. Patients were diagnosed by clinicians who
performed lumbar punctures and measured their of the intracranial pressure.

Due to individual differences in human brains, the spatial coordinates of
images in the scanning process are different. Therefore, individual differences
must be eliminated in the first place to unify the coordinates. That is, all
the brains of the subjects need to be corrected, or registered, on the standard



template, so that subsequent statistical analysis can be conducted. Domain
experts manually completed this process, providing us with registered images
for each patient. The ground truth annotation labels were as following:

Label 0 Patients without NICH

Label 1 Patients with NICH

Data Collection I

; | |
NICH-positive NICH-negative
(n = 58) (n=35)

Figure 1: Flowchart demonstrating data collection and split.

4.2 Data Preprocessing

Before inputting our images into our feature reduction steps, every MRI image
was converted from Neuroimaging Informations Technology Initiative (NIFTT)
format to a NumPy array (https://numpy.org). The MRI images were three-
dimensional head and neck scans of size size 117 x 159 x 126. Each 3D voxel
was of size 0.78 mm x 0.78 mm x 0.78 mm.

These three dimensional images were flattened into one-dimensional arrays.
Thus, they were able to feature-reduced by the t-distributed Stochastic Neighbor
Embedding (t-SNE) and Principal Component Analysis (PCA) methods.

To utilize our autoencoder, which expects two-dimensional inputs, we sep-
arated each three-dimensional image into slices by its z-axis. Thus, all 85
three-dimensional images of size 117 x 159 x 126 were separated into 10710
two-dimensional images of size 117 x 159.

4.3 Feature Reduction Methods
4.3.1 Principal Component Analysis

As the first baseline method, we utilized principal component analysis (PCA)
for feature reduction. PCA reduces dimensionality of data while retaining most
of the variation in the dataset by identifying directions along which the variation
in the data is maximal [12]. These directions, called principal components, now
represent the variation of the data in a lower dimensionality space. By using
a few components, each patient sample can be represented by relatively few
numbers instead of by values for thousands of variables. Of note, PCA can only
learn linear transformation of the features.



We applied PCA by utilizing a principal component analysis implementation
from scikit-learn[13]. Our original images contained 2343978 features. These
images were reduced to their top 10, 20, 30, 40, 50, 60, 70, and 80 principal
components. All of these eight PCA-reduced datasets were now ready to be
input into our machine learning models. We initially hoped to also reduce our
datasets into their top 90 and 100 principal components as well. However, the
implementation of PCA we used allowed for us to reduce our data to a maximum
of 85 components, since the dataset contained 85 samples.

4.3.2 t- Distributed Stochastic Neighbor Embedding

As an additional baseline method, we utilized t-Distributed Stochastic Neighbor
Embedding (t-SNE) for feature reduction. Unlike PCA, t-SNE is is a non-linear
dimensionality reduction algorithm [14]. It maps multi-dimensional data to two
or more dimensions suitable for human observation.

We applied t-SNE by utilizing a principal component analysis implementa-
tion from scikit-learn[13] .As a part of this process, we had to tune the per-
plexity hyperparameter of t-SNE. After visualizing our data in two dimensions
with perplexity values ranging from 5 to 50, incremented by 5, we found that a
perplexity value of 45 worked best for our data.

Though t-SNE is commonly used to reduce data to two or three dimensions
for visualization purposes, we utilized it to reduce our 2343978 feature images
to 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 components. These ten t-SNE
reduced datasets were now ready to be input into our machine learning models.

4.3.3 Autoencoder

In our study, we built an autoencoder in order to reduce the dimensionality of
our data. An autoencoder has two parts: the encoder and the decoder. The
encoder reduces the high-dimensionality image into a low-dimensional space,
called the bottleneck or latent space. From the latent space representation, the
decoder then reconstructs the image [15].

Of note, our autoencoder took in 10710 two-dimensional images of size 117
x 159. The 10710 two-dimensional images were extracted by slicing the 3D
MRI images from all 85 patients into 126 two-dimensional images. Our encoder
included the following: a convolutional layer, a max pooling layer, a second
convolutional layer, a second max pooling layer, a third convolutional layer, and
the final dense layer. Our decoder, essentially a reversal of the encoder, included
the following: a dense layer, a convolutional layer, an upsampling layer, a second
convolutional layer, a second upsampling layer, and a third convolutional layer.a
The autoencoder took in 10710 two-dimensional images of size 117 x 159.

After the autoencoder was trained, we were able to extract the latent space
representation. We performed this process with a specified latent space of size
10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. Thus, our 2D images of size 18603
were reduce to these sizes. Then, all the latent size representations from the



same sample were concatenated into a single row, creating feature array with
the 85 samples and 126*latent-size features.

2D Input Image 2D Reconstructed Image
T < -1
LN S~ Latent Layer A
\ S~ Representation -] [ /
— N T e —~ e
/ \ - - / \
L L AN l ParA || ;L

_lf\_,\—,\/\_/\_l\\_
I N B N P N Y A W S Y N
/ \[ 72~ ~A ) \

\ / - \ /

L/ — 2 Py o \ —
Pt U0
T o~ [
L+ ~y
‘ Encoder l l Decoder ,

Figure 2: Autoencoder architecture.

4.4 Classification Methods

With our datasets now considerably reduced, we were ready to input our datasets
into the machine learning algorithms. Given the small size of our dataset, we
decided to use two relatively simple binary classification algorithms: logistic
regression (LR) with regularization and support vector machines (SVM).

Both of these were implemented via implementations from scikit-learn [13].
Of note, we utilized a support vector machine model with a linear kernel and
another support vector machine with a rbf kernel.

4.5 Evaluation

Given our small dataset size, we evaluated our data with a 3-fold training and
testing scheme. Our data was divided into 3-folds, with two of the folds being
utilized for the training and the third held out as our testing set. The third that
was selected as the testing set was then changed, and our model was retrained
and tested. This was repeated three times. Thus, the resulting output was three
of every metric, of which we found the average and standard deviation.

We evaluated our models with the following metrics: average precision score
and area under the receiver operating characteristic curve (ROC AUC). These
metrics take in account the slight class imbalance of our dataset.
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Figure 3: Methods overview.

5 Results

An important result of this study was the development of our feature reduction
and machine learning pipeline to predict NICH.

Training our autoencoder was an important and computationally-expensive
step to feature reduce our input data. In this step, the layers in the decoder
and encoder of the autoencoder were tuned in an attempt to minimize the loss
between the original image and reconstructed image. As Figure 4 shows, the size
of the latent layer representation did not drastically affect the loss between the
original image and the reconstructed image. After 10 epochs, the loss across
the different size latent layer representations remained relatively close to one
another.
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Figure 4: Change in loss for autoencoders of various latent layer representation
sizes.

After feature reduction, we applied three machine learning models to our
newly reduced data: 1) a logistic regression classifier 2) a support vector machine
classifier with a linear kernel and 3) a support vector machine classifier with
an rbf kernel. Of the three methods, the SVM with an rbf kernel was most
successful in classifying our data, as shown by its high precision scores and
ROC AUC scores [Figure 5, Figure 6]. This is likely because this method was
able to capture the non-linear decision boundary between the data points of the
two classes. For the sake of visualization, we will compare the performance of
these three methods to predict NICH based on the same autoencoder-reduced
dataset.

Precision Scores after Reduction by Autoencoder across Various Machine Learning Models
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Figure 5: Precision scores after feature reduction by autoencoder at various
latent layer sizes for three machine learning models: logistic regression, SVM
with a linear kernel, and SVM with an rbf kernel.



ROC AUC Scores after Reduction by Autoencoder across Various Machine Learning Models
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Figure 6: ROC AUC scores after feature reduction by autoencoder at various
latent layer sizes for three machine learning models: logistic regression, SVM
with a linear kernel, and SVM with an rbf kernel.

With the SVM with an rbf kernel selected as the best machine learning
model, we now compared the performance of this machine learning model to
classify our data based on the three datasets: one reduced by an autoencoder,
one reduced by PCA, and one reduced by t-SNE. Our evaluation demonstrates
that, after being input into the same machine learning model, the dataset re-
duced by an autoencoders consistently performed better in this prediction task
than the datasets reduced by PCA and t-SNE, as shown by the higher ROC
AUC and precision scores [Figure 7, Figure 8]. Of note, for the size of the la-
tent layer parameter of the autoencoder, this value is per 2D slice for the MRI.
For PCA and t-SNE, it is per 3D MRI image. Thus, the autoencoder reduced
feature matrix was larger in size than than PCA and t-SNE reduced feature
matrices.

As different feature reductions methods performed optimally at different
latent sizes, the most fair comparison of the three methods is to compare their
best performing metrics, which may occur at varying latent representation sizes.
Comparing these best performing metrics, we demonstrate that the data reduced
by the autoencoder continued to achieve the higest precision score of 0.928 and
the highest ROC AUC score of 0.820[Figure 9, Figure 10].



Precision Scores after Training with SVM with rbf Kernel across Various Feature Reduction Methods
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Figure 7: Precision scores after feature reduction by autoencoder, t-SNE, and
PCA at various latent layer sizes and utilizing the same machine learning model,
a SVM with an rbf kernel.

ROC AUC Scores after Training with SVM with rbf Kernel across Various Feature Reduction Methods
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Figure 8: ROC AUC scores after feature reduction by autoencoder, t-SNE, and
PCA at various latent layer sizes and utilizing the same machine learning model,
a SVM with an rbf kernel.

To conclude, the best performance, with respect to both precision and ROC
AUC score, was the achieved by applying an SVM with an rbf kernel to data
reduced by the autoencoder with a latent layer representation of size 10.

6 Discussion
Our results have shown that autoencoders can effectively feature reduce large
clinical images, preparing them for training by machine learning models such

as SVMs and logistic regressions. The data reduced by autoencoders performed
better with respect to precision scores and AUC scores compared to data reduced
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Figure 9: AUC scores after feature reduction by autoencoder, t-SNE, and PCA
at various latent layer sizes and utilizing the same machine learning model, a
SVM with an rbf kernel.
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Figure 10: ROC AUC scores after feature reduction by autoencoder, t-SNE,
and PCA at various latent layer sizes and utilizing the same machine learning
model, a SVM with an rbf kernel.

by PCA and t-SNE. This is particularly noteworthy, as these two methods,
particulary PCA, are commonly used in the field of neuroimaging to reduce
features.

These results are very promising, showing that feature reduction by au-
toencoders provides reduced dimensionality datasets that are informative for
machine learning models. Despite our small sample size, our models were able
to output predictions with relatively high precision scores and AUC scores. We
were impressed by the success of our autoencoder feature reduction and machine
learning models.
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The greatest limitation of our study was our small sample size. Due to the
small sample size, we were unable to have a validation dataset, and had to utilize
a scheme that divide our data into only training and test datasets. It is also
possible that our small sample size may have resulted in some overfitting.

In the future, we hope to apply our autoencoder feature reduction methodol-
ogy to other clinical imaging datasets, and learn if it can be successfully applied
to answer other clinical imaging-based classification problems. Additionally, we
hope to tune the hyperparameters and architecture of our autoencoder. We
would also like to attempt an approach that utilizes 3D convolutional layers.

To evaluate our autoencoder feature reduction method further, we would
also like to apply it to larger datasets. With larger datasets, we could apply
more machine learning algorithms. We could also take a fully deep learning
based approach, and apply neural network to clinical imaging data.
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