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Abstract

Anesthesia, in particular opioids, may have significant clinical implications in can-
cer. This effect cannot be generalized across different cancer types, and this likely holds
true across cancer subtypes as well. From unpublished retrospective clinical data, lung
adenocarcinoma and triple negative breast cancer outcomes were shown to be nega-
tively and positively impacted, respectively. Using retrospective genomic analysis and
general knowledge of opioid mechanism of actions, bulk RNA sequencing and single
cell RNA sequencing was analyzed to determine not only what cellular pathways are
being impacted by opioid exposure, but also where in the tumor microenvironment
this mechanism of action. Through this analysis, initial guesses to the cells of action
indicate that the tumor in lung adenocarcinoma and immune cells in triple negative
breast cancer are the likely site. This work hopes to inform future research at all levels
of experiments: clinical, animal models, genomic, and computational.
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1 Introduction

While the 20th century was focused on bringing medical care to a high standard, the 21st

century will focus on precision medicine. Increasingly, precision medicine has looked at

transcriptome level information.1,2 Though genomics offers a great amount of detail, the

complex regulatory networks and feedback loops that determine cell state are failed to be

fully captured by just studying the genome. Incorporating transcriptome-level sequencing

allows for consideration of these important elements of biology. Recently, these techniques

have been applied to cancer,3,4 allowing for more specialized treatment of cancer.

Cancer is one of the leading causes of death in the developed world. Though it is gen-

erally thought of as a single disease state due to a similar basic clinical presentation, cancer

is a highly complex group of diseases that results, generally, from broad disregulation in

the human body. Thus, to understand both the pathology and the best course of precise

treatment, analysis is needed at a very specific level. In this work, we look a the rapidly

evolving field of oncoanesthesia, or the study of how anesthetics and pain management affect

cancer. Particularly, we analyze how perioperative techniques may affect patient survival at

a detailed molecular biology level, both to corroborate clinical data and to generate unique

biochemical hypotheses as to the exact mechanisms that cause these techniques to have their

oncological effects. The goal of this research is primarily exploratory; it is supposed to drive

future research into this growing field of how our medicine must be increasingly precise to

lead to the best outcomes for patients.

2 Background

Cancer is a complex, heterogeneous set of disease. While treatment regularly focuses on

the tumor if the cancer is solid tissue, a number of changes must occur in the surrounding

environment for the cancer to take root and spread in the human body.
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2.1 The Tumor microenvironment

In various cases, inflammatory responses to disease and conditions, such as H. pylori infec-

tion, can lead to an increased risk of cancer.5 These responses, while completely normal host

responses, cause changes in stromal cells around what will later become the tumor. These

changes produce altered cell states, which, when tumorigenesis occurs, become known as the

tumor microenvironment or TME. The TME is known to have increased acidity, hypoxia,

ischemia, and decreased nutrition as compared to normal tissue.6 The TME is composed of

a diverse group of cells, including the tumor, immune cells, extra-cellular matrix (ECM),

and other cells that may be involved in the local area. In particular, the stroma of the TME

may be associated with cancer-associated fibroblasts (CAFs), innate and adaptive immune

cells, such as B cells, T helper (Th) cells, natural killer (NK)cells, cytotoxic T lymphocytes

(CTLs), and regulatory T (Treg) cells,7 and various cancer-producing stem cells (see fig. 1).

These cells produce a high amount of cytokines and other growth factors that increase in-

flammation and cellular reproduction. CAFs produce most of the ECM and are responsible

for autocrine and paracrine secretions in the TME.8 Though there are vast similarities in the

TME, as described by [3], cancer TMEs are different enough to be separable and because of

our concern of specific response, we address each separately.

2.2 Lung Adenocarcinoma

Lung cancer is one of the most common forms of cancer. A vast majority are non-small

cell lung cancer (NSCLC), which is the primary type to be associated with smoking. Of

this form, two primary subtypes exist: adenocarcinoma (LUAD) and squamous cell car-

cinoma. Because squamous cell carcinoma is associated with non-filtered cigarettes, most

modern lung cancer patients have adenocarcinoma, which is associated with smoking fil-

tered cigarettes.10 Clinically, adenocarcinoma presents itself on the outside of the lung and
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Figure 1: A cartoon representation of the tumor microenvironment. This shows what the
environment around a solid state tumor may look like. Note that this also shows adipocytes

and pericytes, which are not discussed in this thesis. Reproduced from Balkwill et al.9

is thought to originate in Atypical Type II pneumocyte (alveolar) cells, though this is only

a hypothesis. Other papers suggest that club cells, which are another form of alveolar cells,

though this was only found in mice.11

From a molecular standpoint, LUAD presents itself as a complex disease. Weir and col-

leagues present an early full genome SNP array, showing a large number of copy-number

variations and common amplifications and deletions, leading to the hypothesis of NKX2-1

being a major promoter of LUAD tumorigenesis.12 Similar research at the WGS and exome

level level confirmed that in-frame exon mutations of EGFR and SIK2 were likely associated

with causing LUAD, as were novel targets like ARID1A, RBM10, and U2AF1.13 TCGA

studied the exome, genome, epistatic regulation, and proteomic analysis of lung adenocarci-

noma and was able to corroborate the findings from before.14 They also found that various
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pathways were upregulated in lung adenocarcinoma, including RTK/RAS/RAF pathway

activation (76% of cases), PI(3)K-mTOR pathway activation (25%), p53 pathway alter-

ation (63%), alteration of cell cycle regulators (64%), alteration of oxidative stress pathways

(22%), and mutation of various chromatin and RNA splicing factors (49%). Because of the

heterogeneous nature of mutations, some patients respond well to PD-L1 immunotherapy or

checkpoint inhibition, while others fail to benefit from these interventions at all, and other

patients respond to cisplatin-based therapies, as well as the use of TK inhibitors to target

EGFR-based pathways.15

2.2.1 LUAD Tumor microenvironment

The lung TME is similar to other TMEs and can be agitated by inflammatory conditions,

like smoking and chronic obstructive pulmonary disease.16 CAFs secrete a large number

Figure 2: The specific signaling involved in the LUAD tumor microenvironment. This
specifically shows the role of immune cells and cancer-associated fibroblasts in great detail.

Reproduced from Altorki et al.16
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of paracrine factors that induce cell metastasis and stem-cell characteristic of cancerous

lung cells. CAFs are also known to suppress T cell function, through presentation of PD1

receptors and antigen presentation. CAFs produce the ECM, which promotes a variety of

downstream cascades including EGFR production to induce tumorigenesis. Further, ECM

density has been shown to prevent T cell infiltration, decreasing the efficacy of immune-

based therapies. Immune cells are known to have both tumor-promoting and suppressing

activities based on their genetic profile and local signaling. Within myeloid cells, tumors

are known to upregulate dendritic cells, so they suppress T cells as opposed to priming

them.17 Furthermore, neutrophils can themselves revert to an immunosuppressive state that

is characterized by expression of LOX1. NK cells, which govern targeting of tumor cells,

seem to enter dysfunction within the environment, though in vitro studies show these cells

continue to express tumor suppressing activity.18 Lymphoid cells also display great variety

in responses to TME. Much of the response to immunotherapy is derived from these cells,

and a critical balancing act between pro-inflammatory and immunosuppressive activty is

necessary for effective response to lung carcinogenesis. Activated B cells are known to be

associated with increase T reg activity, which reduces immune function.19 A summary of

these interactions is shown in fig. 2. A closer inspection of the LUAD TME by single-cell RNA

sequencing (scRNA-seq) provides a more microscopic view of the vast changes that the TME

causes in a broad scheme of cells.20 It was shown that subtypes of cells outside and inside the

TME were vastly more than anticipated, suggesting that many types of biological entities

exist within the tumor microenvironment than previously estimated. Importantly, this also

showed that most cell subtypes appeared in multiple patients, allowing for generalizations

of data to be made from one patient to another.
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2.3 Triple Negative Breast Cancer

Breast cancer is the second leading cause of cancer death in women. Breast cancer is hetero-

geneous group of diseases, with the genetic and immunohistochemical profile of the tumor

being important to treatment response and prognosis. These types include HR positive,

which is estrogen and progesterone receptor positive, HER-2 positive and triple negative

breast cancer, which is negative to all of the other 3 receptors.21 Triple negative breast can-

cer, or TNBC, has the poorest long term prognosis of any of the breast cancers. Furthermore,

though tumors have been shown to be responsive to various chemotherapy agents, including

taxanes and platinum-containing compounds, these do not seem to shown any changes in

outcome.22 Such difficulties complicate treatment, even worsening outcomes after surgery.23

Triple negative BC is also noted for a high number of tumor infiltrating lymphocytes

(TILs), with extremely high numbers being associated with better outcomes.24 In particular,

this has suggested that TNBC may be a valuable target for immune checkpoint blockade

therapy. Furthermore, based on molecular subtype, TNBC can be further classified by gene

set analysis of which major pathways are enriched.25 This molecular subtyping has allowed

for some precision in driving possible clinical regimes that are effective in the face of the

poor prognosis of the disease. However, because of the diversity of genetic signatures, it

has not been possible to find global signals that relate to causal expression in most TNBC

subtypes.26

2.3.1 TNBC Tumor microenvironment

As mentioned before, one distinguishing feature of TNBC microenvironment is the presence

of tumor infiltrating lymphocytes. Many TILs are switched to the Treg state, which blocks

immune response and enhances cancer development and progression.27 A marker of Tregs

is gene FOXP3, and the number of T cells expressing FOXP3 is significantly upregulated

in TNBC. This implies that TILs may serve as a harmful, as opposed to protective, role
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in some cases. Another associated cell type are macrophages, which generally spit into two

groups, M1 and M2.28 M2 macrophages are known to be tumor-promoting as they produce

a high level of cytokines leading to enhanced inflammation, growth factors and proteases,

angiogenesis, enhance metastasis, and contribute to extracellular matrix remodeling. Cancer

associated fibroblasts are known to accelerate tumor progression in TNBC by activating

TGF-β, a known oncogene, as well as mediating signaling between different groups of cells

in the microenvironment.29 CAFs also cause a metabolic increase in tumor cells and were

also shown by Tchou and colleagues to promote epithelial-mesenchmyal transition, leading

to tumor spread and cell migration.30 Other major features of the the TNBC TME include

endothelial cells that are thought to promote angiogensis and vascularization of tumor tissue,

the extra-cellular matrix, where much of the signaling to cause the epithelial-mesenchmyal

transition are thought to be found, such as loss of E-cadherin and Snail expression,31 and

finally certain genetic expression that can induce different tissue metastasis.32 It is clear

that TNBC tumors can effectively recruit their microenvironment to further alter conditions

and promote both tumor growth and metastasis, worsening prognosis and outcomes. Some

recent scRNA-seq studies have suggested that as opposed to all-or-nothing type scenarios

for various cells that exist in the TME, a continuous spectrum of continuous activation and

diffrentation trajectories may exist.33

2.4 scRNA-seq

RNA-sequencing is a genomic approach for the detection and quantification of messenger

RNA molecules and is useful for studying cellular responses to changes in conditions. How-

ever, this is generally done in millions of cells at once and can wash out signal from specific

cells. Until recently, it was not possible to probe with better resolution. Some experimenters

used forms of cytometry that could detect expression of protein, including mass cytometry

that could magnify protein expression in a cell.34 Still, this fails to grab a full cellular picture
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Figure 3: Macrophages exist as either M1 or tumor suppressing, or M2 or tumor promoting.
This process is known as macrophage polarization. It has other uses beyond the body from

activity in tumors. This has recently been shown to be a continuum by high-resolution
sequencing and not a sharp division as previously assumed.20 Reproduced from Solinas et al.28

for the thousands of protein expressed at a given time in a cell. However, within the last

decade, the use of single cell-RNA sequencing has taken off as a cellular level map that can

help determine exactly where the effect of a change is taking place, while describing most of

the cellular machinery.

2.4.1 scRNA-seq Technique

In general, scRNA-seq is composed of four sequential steps: isolation and lysis of target cells,

reverse transcription, cDNA amplification, and sequence library preparation, and finally

analysis using computational biology methods, as shown in fig. 4. The last step is generally

carried out by fragmentation and sequencing with a next generation sequencer.35 Isolation
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of cells is the first and most limiting step in scRNA-seq, as cells must be liberated from

ECM and from adhering to themselves. This step causes damage to many cells and an

Figure 4: A standard scRNA-seq workflow. The following 9 steps are condensed into 4 steps
plus analysis in this paper with step 1 corresponding to image step 1 and 2, step 2

corresponding to image step 3 and 4, step 3 corresponding to image step 5, and step 4
corresponding to image step 6 and 7. Reproduced from Haque et al.34
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over-representation of circulating cells that are not as stuck as other cells. Many commercial

sequencers use microfluidics to accomplish this goal, such as 10X Chromium.36 Reverse

transcription is the next step and generally all protocols must avoid amplifying rRNA, which

composes the vast majority of RNA contained in cells. The next step is cDNA amplification,

which generally uses adaptations of PCR or a newly described technique called in vitro

transcription. In general, cells are tagged with certain unique molecular identifiers, a short

genetic read, that allow researchers to later determine all the transcripts that came from a

cell.35 Challenges to scRNA-seq are numerous due to the experimental error involved. All

scRNA-seq experiments suffer from dropout, where a number of truly expressed transcripts

do not reach the level of sensitivity to be detected due to technical and biological noise, and

the batch effect, where slight variations in experimental conditions between batches of cells

can alter transcriptions reads in a statistically significant way. Thus, downstream statistical

analysis of single cell data is a critical part of any successful scRNA-seq experiment.

2.4.2 scRNA-seq Computational and Statistical Analysis

Because of the complexities of scRNA experiments, significant computational and statistical-

based analysis of the systems must occur. First and foremost, imputation can be carried

out to partially fill in for dropout events. However, though many tools exist to impute gene

values such as SAVER, DrImpute, and scone , many analyses do not require strict imputation

to give accurate cell type information37 and imputation is known to give incorrect results in

some cases.38 Batch effects must also be normalized against, as do individual stochastic cell

effects such as cell cycle etc.39 Normalization is generally the single most important part of a

scRNA-seq experiment, and poor data normalization can harm down stream performance.37

State of the art normalization techniques, such as those used in the R package scran, involves

computing deconvolutions on clusters of cells, which is similar to other methodologies that

use pools of similar cells to compute correction factors,40 or known values of added genetic
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Figure 5: A prototypical analysis involved in an scRNA-seq experiment. A corresponds to
experimental gathering of cells, library generation, normalization and imputation, and lower

dimensional embedding and clustering. B shows how patient metadata may be used to
segregate patients. C Another image showing two low dimensional embeddings for two

different patients. D Pie charts that show the percentage of identified cells in each patient. E
Differential expression analysis of hypoxic signatures, a common differentially expressed

pathway in cancer. Reproduced from Azizi et al33
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information called spike-ins to normalize against. Finally, as the number of observed genes

in a full scRNA-seq data set is generally on the order of 10000, dimensionality reduction or

low-dimension embedding techniques are used to find the most important or varied genes

and then genes are clustered into possible clusters. This is generally checked against expert

knowledge of known marker genes for different cell lineages to show the clusters are expressing

those markers as expected. From these clusters, various forms of differential analysis can

be carried out, including on entire pathways of genes. Because of the vast number of genes

measured, statistical power of these experiments can only be improved by using multiple

hypothesis correction tests. These include false detection rate and family-wise error rate,

with the former used more in hypothesis generation, while the latter is used to verify the

statistical significance of conclusions. A sample overview of general analysis undertaken in

most scRNA-seq experiments is shown in fig. 5

2.5 Anesthesia and Inflammation

As mentioned in section 2.1, inflammation is a major cause of cancer. Anesthetic compounds,

especially those used in general anesthesia, are known to reduce immune function. It is

thought that this function is protective against certain type of surgical-related complications

like ischemia and reperfusion injury, though it may be harmful in stopping cancer from

metastasizing. In particular, the volatile anesthetics (sevoflurane, halothane, isoflurane etc.)

inhibit the function of neutrophils, increases NO production to surpress inflammation from

macrophages, and decreased secretion of IFN affecting both NK cells and lymphocytes.41

Propofol is shown to have a similar dose-dependent effect on neutrophils and macrophages,

though research still needs to be done on T cells and NK cells. Finally, opioids are known

to have immunosuppressive effects through activation of the hyptohalmic-pituitary-adrenal

axis. This may be due to the fact that most immune cells express at least some of the

canonical opioid receptors. However, synthetic agonists like remifentanil and fentanyl do not
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have the same attenuating effect as the other anesthetics.

2.5.1 Cancer and Anesthesia

Because of the effects on the immune system by anesthesia, there is a growing body of

evidence that suggests that cancer outcomes, especially in the post-operative period, are

affected by choice of anesthetic in the perioperative period. Different anesthetic compounds

are thought to have different effects, as mentioned in the previous section, but this is also

sensitive to cancer type. For instance, the volatile anesthesia halothance was shown to

accelerate post-operative metastasis in lung and liver carcinomas in mice models.42 However,

sevolflurane, a similar compound, was shown to suppress lung cancer metastasis and growth

of liver cancer cells.43 Surprisingly, sevoflurane is known to increase proliferation, migration,

and invasion of primary breast tumor in vitro, showing that more precise solutions may be

necessary.44 Despite these studies indicating association, both causal evidence and biological

rationale have been failed to be developed in human population, as most studies have been

carried out in either animal models or are retrospective analysis of survivorship without

investigation of underlying molecular physiology.

In this work, we focus on the opioids for reasons mentioned in section 3. Opioids have been

shown to negatively affect outcome in cancer like LUAD45 and renal cell carcinoma,46 while

leading to anti-tumor activities in esophageal cancer.47 Molecular evidence, as mentioned

insection 2.5, suggest that opioids are immunomodulators, indicating that the effect may be

modulated through the TME. Both cancer and immune cells are know to express a variety of

opioid receptors48 and non-canonical opioid targets that are known to affect cancer outcomes,

such as the Toll-like receptors,49,50 which can activate receptor-dependent cascades and lead

to broad effects across the cancer transcriptome.
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2.5.2 Lung Adenocarcinoma and Opioids

As mentioned, opioids are shown to negatively impact outcomes in lung adenocarcinoma.45

The finding was also confirmed in a second retrospective analysis by Oh and colleagues.51 The

assumption of causality comes from the finding that LUAD is an immune-infiltrated form of

cancer.46 Animal clinical models also suggest that the µ-opioid receptor may influence lung

cancer progression,52 as well as in vitro models.53 However, most studies only manage to

suggest an associative mechanism. Very few focus on suggesting exactly what actions the

drugs take to cause this acceleration of tumor progression.

2.5.3 Triple Negative Breast Cancer and Opioids

The influence of anesthetic intervention on breast cancer is still an open question.54 Studies

indicate that volatile anesthesia and propofol-based techniques do not have significantly

different rates of recurrence.55 However, while work by Sessler and colleagues was a large,

randomized experiment, it should be noted that segregation of patients by breast cancer type

was not carried out. As mentioned in section 2.3, triple negative breast cancer is known to

have a vast number of tumor infiltrating lymphocytes. This suggests that studies that look

in breast cancer in bulk may fail to account for the immunogenic responses of the different

subtypes, as the most common form of BC is the least affected by immunosuppressive or

other effects by anesthetic compounds. Thus, this paper will focus on TNBC that has not

been studied in depth. Only a few experimental in vitro papers report any results on TNBC,

suggesting that it might be protective.56 However, studies on bulk cancer suggest that no

effect is present.57,58 This suggest the importance of carrying out more fine-grained studies

that do not wash out effects from ”one size fits all” thinking.
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3 Motivation

The motivation of this work is to study the effects of anesthesia, specifically opioids, on lung

adenocarcinoma and triple breast cancer. Based on currently unpublished retrospective

clinical, genomic, and pathological analysis carried out at Memorial Sloan Kettering Cancer

Center in New York, opioids do show a sign of affecting both of these types of cancer. Based

on this data and the influence of tumor microenvironments in cancer, published scRNA-seq

data20,59 corresponding to the TMEs of these cancers was analyzed to find which cells were

most likely driving the effects of these compounds. By analyzing disregulation from within

and outside the TME, hypotheses can be generated to guide future prospective research.

3.1 Lung Adenocarcinoma Motivation

A retrospective study was carried out on a cohort of lung adenocarcinoma patients. These

patients also had IMPACT panels, which are genetic panels that check a variety of SNPs

in patient. The retrospective study confirmed that opioids had a harmful impact on lung

adenocarcinoma outcomes. However, combined with the genetic analysis, putative pathways

and genes of interest that could impact patient survival through mediation of the opioid

activity were identified. This was the PI3K pathway and the CDKN2A gene. The PI3K

pathway is a commonly disregulated pathway in cancer, as it contains the tumor suppressor

PTEN and other that acts on PI3K, with downstream effects on the AKT-mTOR canonical

pathway.61 This downstream pathway is known to activate increased protein synthesis due to

mTORC1 (a protein complex containing mTOR) activity and cell survival through mTORC2

(a separate complex containing mTOR) (see fig. 6a). A curated gene list was selected from

the mSigDB62 and combined with another list from an internal Memorial Sloan Kettering

IMPACT panel-derived list to generate the list found in fig. 6b. A partial representation of

this list and reg CDKN2A, or cyclin dependent kinase inhibitor 2a is an oncogene that codes
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(a) (b)
ACACA ACTR2 ACTR3 ADCY2
AKT1 AKT1S1 AKT2 AKT3
AP2M1 ARF1 ARHGDIA ARPC3
ATF1 CAB39 CAB39L CALR
CAMK4 CDK1 CDK2 CDK4
CDKN1A CDKN1B CFL1 CLTC
CSNK2B CXCR4 DAPP1 DDIT3
DEPDC5 DEPTOR DUSP3 E2F1
ECSIT EGFR EIF4E EIF4EBP1
FASLG FGF17 FGF22 GNA14
GNGT1 GRB2 GSK3B HRAS
HSP90B1 IL2RG IL4 INPP4B
ITPR2 LCK MAP2K3 MAP2K6
MAP3K7 MAPK1 MAPK10 MAPK8
MAPK9 MAPKAP1 MKNK1 MKNK2
MLST8 MTOR MYD88 NCK1
NFKBIB NGF NOD1 NPRL2
NPRL3 PAK4 PDK1 PFN1
PIK3CA PIK3CB PIK3R1 PIK3R2
PIK3R3 PIKFYVE PIN1 PITX2
PLA2G12A PLCB1 PLCG1 PPP1CA
PPP2R1A PPP2R1B PRKAA2 PRKAG1
PRKAR2A PRKCB PTEN PTPN11
RAC1 RAF1 RALB RHEB
RICTOR RIPK1 RIT1 RPS6
RPS6KA1 RPS6KA3 RPS6KB1 RPTOR
SFN SLA SLC2A1 SMAD2
SQSTM1 STAT2 STK11 TBK1
THEM4 TIAM1 TNFRSF1A TRAF2
TRIB3 TSC1 TSC2 UBE2D3
UBE2N VAV3 YWHAB

Figure 6: (a) The canonical PI3K/AKT/mTOR pathway. The RAPTOR and RICTOR
containing complexes are mTORC1 and mTORC2, respectively. The PI3K complex contains
3 structural elements (CA,CB, and CG), and 3 regulatory elements (R1,R2,R3). Figure from
wikipathways and based on work60 by Edlind and Hsieh. (b) A list of genes identified from

MSK IMPACT and mSigDB that are relevant to the PI3K/AKT/mTOR pathway that is used
in analysis. Note that this gene list is more comprehensive than the picture of the pathway.

for the cell-cycle inhibitor p16. It prevents cellular proliferation and is part of a broader

pathway of cell-cycle control genes that are mainly governed by cyclin dependent kinases;

hence, the inhibition by CDKN2A downregulates this pathway.63 Thus, the goal of this study

is to find where in the TME these genes may be upregulated or downregulated.

20



3.2 Triple Negative Breast Cancer Motivation

Similar to LUAD, a retrospective cohort of triple negative breast cancer was analyzed for

response to opioids and other anesthetic compounds. A protective relationship was sug-

gested between opioids and breast cancer. While there was no genetic screen done on this

data,hypothesis generation to determine where opioids could be acting would be informa-

tive. The aim is similar to LUAD, except with less precise targeting. Instead of a path-

way, a list of canonical and non-canonical opioid receptors64 was collected to be analyzed:

OPRM1,OPRL1,OPRD1, TLR4,OGFR,OGFRL1, OPRK1,and TLR2.

4 Methods

The basis of this project arose from the analysis of the two scRNA datasets in section 3.

Though there is some merit to rerunning a full analysis pipeline, the normalized data from

both experiments was used as the starting point. Because both involved expert analysis

of whether clustering and other methods were being accurately applied, renormalizing and

clustering may introduce more errors than they fix. Though a thorough examination of the

strategies used to normalize in both papers is out of the scope of this thesis, both used

well-established methods to normalize data.

4.1 Lung-specific Methods

Lung adenocarcinoma tumor microenvironment data was drawn from a massive scRNA-seq

experiment run by Lambrechts and colleagues20 that had over 50k . In the initial data set, 5

patients were analyzed. However, only 2 of these patients had LUAD, and so the remaining

patients were left out from analysis. These 2 patients represented approximately 30k cells.

There were 22180 genes present in this data set. The breakdown of the cells is presented in

section 4, as clustered by the authors. When referring to cell type, this refers to the overall
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Cluster Total Cells Percentage Tumor Derived Annotation from Lambrechts et al.20

Alveolar 0 197 18.8% AT2 Cells
Alveolar 1 221 43.9%
Alveolar 2 238 10.5% AT1 Cells
Alveolar 3 47 70.2% COPD-Injured Cells
Alveolar 4 143 7.0% Respiratory Epithelial Cells
Alveolar 5 5 60.0% Club Cells
Alveolar 6 7 100.0% Basal Cells
Alveolar 858 24.7%
B cell 0 758 85.9% Follicular B Cells
B cell 1 277 91.3% Follicular B Cells
B cell 2 390 97.7% Plasma B Cells
B cell 3 252 73.0% Mast Cells
B cell 4 272 90.4% MALT B Cells
B cell 5 175 96.6% Plasma B Cells
B cell 6 230 91.7% MALT B Cells
B cell 7 53 66.0% Plasmacytoid Dendritic Cells
B cell 8 18 38.9% Erythroblasts
B cell 2425 88.1%
EC 0 320 0.3% Non-Malignant EC
EC 1 262 37.4% Lower Quality EC
EC 2 119 94.1% Tumor EC
EC 3 185 94.1% Tumor EC
EC 4 237 10.1% Non-Malignant EC
EC 5 47 36.2% Lymphatic EC
EC 1170 36.4%

Epi 0 37 51.4%
Epi 1 13 61.5%
Epi 50 54.0%

Fibro 0 197 99.5% Tumor Enriched
Fibro 1 191 84.3% Myofibroblasts
Fibro 2 105 80.0% Lower Quality Cells
Fibro 3 117 79.5%
Fibro 4 30 66.7%
Fibro 5 156 13.5% Non-Malignant Enriched
Fibro 6 2 0.0%
Fibro 798 72.1%

Myeloid 0 243 30.0% Macrophages
Myeloid 1 1772 97.6% Tumor-Associated Macrophages
Myeloid 2 583 40.1% Tumor-Associated Macrophages
Myeloid 3 605 96.2% Tumor-Associated Macrophages
Myeloid 4 394 86.3% Langerhans Cells
Myeloid 5 463 6.7% Lung-Associated Macrophages
Myeloid 6 361 31.0% Granulocytes
Myeloid 7 392 1.0% Lung-Associated Macrophages
Myeloid 8 134 43.3% Lung-Associated Cells
Myeloid 9 213 12.7% Lung-Associated Macrophages
Myeloid 10 8 0.0% Lung-Associated Macrophages
Myeloid 11 90 53.3% Cross-Presenting Dendritic Cells

Myeloid 5258 61.6%
T cell 0 2587 89.1% CD4+ T Cells
T cell 1 2868 88.0% CD8+ T Cells
T cell 2 1951 18.9% CD4+ T Cells
T cell 3 3183 99.8% CD8+ T Cells
T cell 4 1421 87.5% CD8+ T Cells
T cell 5 912 33.8% Natural Killer Cells
T cell 6 1040 92.0% Regulatory T Cells
T cell 7 784 93.6% CD8+ T Cells
T cell 8 481 96.9% CD4+ T Cells
T cell 15227 79.3%

Tumor 0 139 97.1% Primarily Patient 5 Derived
Tumor 1 3 100.0% Primarily Patient 5 Derived
Tumor 2 1180 96.6% Primarily Patient 4 Derived
Tumor 3 750 98.0% Primarily Patient 3 Derived
Tumor 4 582 100.0% Primarily Patient 4 Derived
Tumor 5 498 99.8% Primarily Patient 3 Derived
Tumor 6 494 97.0% Primarily Patient 4 Derived
Tumor 7 456 99.6% Primarily Patient 4 Derived
tumor 4102 98.1%

Figure 7: Cell data that was used in the scRNA LUAD analysis. EC stands for endothelial
cell, Epi stands for epithelial cells, and Fibro stands for Fibroblasts. These abbreviations are

used in other graphics.

cell type such as T cell or B cell, while cluster or subtype refers to the clusters present in the

figure. The data also includes normal tissue that allows for differential analysis to be done
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between cells within the TME and cells outside of the TME. Bulk RNA-sequencing data

from TCGA was also collected, with 535 primary cancer samples and 59 normal samples, all

from patients with LUAD. These were normalized using DESeq265 for further downstream

analysis, and p-value adjusted using Benjamini-Hochberg (FDR correction).

4.1.1 Finding ”Normal” Cells for Tumor Comparison

One area in which original processing had to be done was finding what the matched normal

cells were for comparison with tumor. The tumor cells that existed ”outside” of the tumor

were likely early stage signs that some tumor cells had drifted away from the original tumor

site, not matched normals. Though there is suggestion that alveolar cells are the likely

progenitors of tumors in LUAD, it is still not a known fact if this is true or not.66 To

analyze where the tumor cells truly came from, a simple multilayer perceptron or MLP was

constructed. An MLP is one of the most basic forms of neural networks is generally used to

classify some test set (in this case tumor cells) based on a train set(in this case the other cells).

Because an MLP can approximate decision boundaries based on high dimensional space, it is

ideal for studying where tumor cells are most likely derived from. The MLP architecture had

two hidden layers, with 1024 and 128 nodes respectively. The choice of activation function

was RELU for the hidden layers, and a softmax layer was used as an output layer. The model

was compiled to use the Adam optimizer67 and use categorical cross-entropy loss, both of

which are common choices in classification tasks. Because of a class misbalance, classes

were equilibriated to be much closer to even, with all cell types with over 2000. The MLP

converged extremely fast, with a loss on the order of 0.0001 achieved within 5 epochs and

accuracy ¿ 99.9%, using a batch size of 100. When applied to the tumor, about 75% of tumor

cells were predicted as being alveolar from the output of maximal probability, and another

17% of tumor cells were predicted as being alveolar from the second highest probability.

This further suggested that alveolar cells were the likely origin point of tumor cells in lung
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adenocarcinoma, and comparisons of differential analysis were done between alveolar and

tumor cells. The next highest groups were B cells and fibroblasts. Further analysis of trying

to identify which specific subtype using a similar neural network failed to reveal a clear

segregation with most tumor cells as being identified as the unannotated due to no specific

marker genes and likely undiffrentiated cluster 1, followed by COPD-injured cells (cluster

3). This may fit with the current theory that adenocarcinoma cells are primarily derived

from alveolar progenitor cells68 that have been induced by inflammation (fig. 8c). Because

of the poor segregation, all the alveolar cells were treated as tumor normal.

One advantage of using the neural net to train on class labels was the creation of a

lower dimension embedding space naturally. The output from the last hidden layer before

the softmax was treated as a lower dimension mapping that could be used in data analysis.

For instance, t-Stochastic Neighbor Embedding (tSNE)69 and the newly developed Uniform

Manifold Approximation and Projection (UMAP)70 run significantly faster when run on

lower dimensional spaces. This is generally done through principle component analysis, but

a neural network is better performing because of its ability to model non-linear spaces (fig. 8).

(a) (b) (c)

Figure 8: Two low dimensional embeddings of the cells in LUAD, after dimensionality
reduction by the neural network to 128 dimensions. (a) The tSNE method to project the 128
dimensions onto 2 dimensions. (b) uses the UMAP method. Note that both show the tumor

and alveolar clusters near each other. In particular, UMAP is thought to preserve cell
trajectory (i.e. cell lineages) better. This can be seen in (c), a zoomed in UMAP projection

where cluster 1 of alveolar is close to the tumor.
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4.1.2 Differential Expression in Lung Adenocarcinoma

The differential expression was carried out by comparing intra-type tumor vs non-tumor

populations. For each of these, p values were calculated using the T-test. To correct for

multiple hypothesis testing, false detection rate was carried out using Benjamini-Hochberg.

A gene was labeled as significant if the q-value was lower than 0.05. Log fold change values

were also calculated on the differential expression.

4.2 Breast-specific Methods

Triple negative breast cancer scRNA-seq data was drawn from a smaller study than lung.59

A total of 1189 cells passed quality control measures, of which a further 1112 were assigned

clusters by the authors, shown in fig. 9. A total of 13280 genes were reported as being

expressed. Because no normal sample was taken, the differential expression was done between

cell types, as opposed to outside or inside tumor. For each of these, analysis was done just

like in LUAD, in terms of p value calculation, FDR, and fold change.

(a)

Cluster Cell Count
B cell 19
EC 14
Epi 868

Macrophage 64
Stroma 94
T cell 53

(b)

Figure 9: (a) The cell clusters as clustered by the authors.59 Naming convention is the same
as in LUAD.(b) A tSNE projection taken from the original paper. Macrophages (dark green)

segregate the most.
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4.2.1 Bulk RNA-seq Analysis of TNBC Tissue

Because no normal scRNA-seq data was available, bulk RNA-seq comparison between triple

negative breast cancer patients found in TCGA, as reported by Lehmann and colleagues,25

was used to find differential expression between the tumor and normal. Bulk RNA-seq normal

data was analyzed from all breast samples in TCGA, not just the matched normals from the

173 TNBC patients. This accounted for 113 patient samples from solid tissue. This data

was normalized using DESeq 2, with the conditions being normal and cancer patients. The

assumption for this data was that any genes with differential expression between normal

and tumor samples in bulk RNA would map equally to scRNA-seq experiments. Thus,

the scRNA-seq data could be used to confirm localization of the increased or decreased

expression.

5 Analysis and Results

Analysis of both tumor samples shows the significant differences between cancer types ac-

count for the differences seen in exposure to opioids. By analyzing both quantitatively and

qualitatively measures of gene expression, putative hypotheses can hopefully be formed.

5.1 Lung Adenocarcinoma Analysis

Because of the retrospective clinical and genetic analysis, the analysis on lung was much

more targeted towards the PI3K pathway. It should be noted that the known genes in a

pathway are not a stable or singular list. Therefore, the list may not be a full or complete

picture of what is occurring in the pathway. The opioid receptors from breast cancer that

were selected in section 3.2 were also analyzed. Though differential expression is obviously

important, the simple strong signal of a gene can also signify that signals may be integrated

through the product of this gene.
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(a) (b) (c)

Figure 10: The violin plots show the 3 PI3K regulatory elements. Each plot is annotated
with Benjamini-Hochberg adjusted p-values (q-values) and log2 fold changes. Plots highlighted
in grey indicate significant data. Though PIK3R2 did not show any statistically significant up

regulation (b), all of the genes did shown an increased fold change in tumor tissue.
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5.1.1 Tumor Cells

Analysis between normal alveolar cells and tumor cells indicate that most genes in the AKT-

PI3K pathway are broadly upregulated. In particular, various downstream products that are

positively involved in tumor-suppression in PI3K are upregulated (DEPTOR, EIF4EBP1),

suggesting that feedback loops are working. However, the primary regulatory activators

of the PI3K pathway were upregulated. These are the PIK3R family of proteins that are

shown in fig. 10. A total of 62 of 124 selected proteins were upregulated in tumor cells

versus alveolar normal, with 18 being downregulated (fig. 11a). A comparison with the

opioid receptors reveals that the major expressed opioid receptor subtype is OGFR, and

there is minor expression of OPRK1, OPRD1, and OPRL1 (fig. 11b). Though studies have

indicated that OGFR may be a protective mechanism,71 this may be modulated through the

µ opioid receptor (OPRM) initially (see section 6 for a deeper discussion). It should be noted

that expression segregated by tumor cluster (fig. 11c). This is likely a side effect of patient

populations within the tumor cluster, as patients 3 and 4 were vastly over-represented in

cluster 2,3,4,5,6, and 7.

5.1.2 Stromal Cells

Stromal cells did not represent a single unified response, and instead had a multitude of

responses. Here, we mostly keep the discussion analysis to immune cells, though it should

be noted that fibroblasts, endothelial, and epithelial cells do play an important role in the

tumor microenvironment. First, it is clear from that B cells are severely unenriched in any

genes from the PI3K-AKT-mTOR pathway (fig. 12c. This is further supported by fig. 12a

that shows a not a single upregulated gene, and a few downregulated significant genes.

Importantly, RPS6, a ribosomal subunit that is activated found downstream of mTORC1,

was found to be depleted in B cells. This indicates that all transcriptional activity was

decreased and the cells were in an exhausted state and can be seen in fig. 12b.
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(a) (b)

(c)

Figure 11: (a)A plot depicting the genes that are upregulated and downregulated in tumor
cells. The x-axis is fold change and the y-axis is adjusted p value. The line depicts 0.05.(b) A
dot plot showing relative opioid receptor prominence for each tumor cluster. (c) A heatmap

showing the the full PI3K pathway as well as CDK2NA expression for the tumor cluster. The
data in the plot is normalized N between 0 and 1 by N = (O −min(O))/max(O), where O is

the data for one gene.

Both myeloid and T cells appear to have a large number of genes represented in the

PI3K pathway fig. 12c. However, further analysis shows that the differential expression for

myeloid cells is not significant. In fact, more genes in the PI3K pathway are downregulated

in myeloid cells (fig. 13a), suggesting that high amount of expression is occurring in the

myeloid cells found outside of the tumor. This is corroborated by fig. 13c that shows the

primarily non-malignant clusters (0,5,6,7,8,9,11), as having higher expression of the genes.

Some of the upregulated genes, such as STAT2 and RIPTOR, form the mTORC2 pathway

that is known to regulate cell cycle survival (evidenced by down regulation of TNFRSF1A, a

precursor to capsase recruitment), while the downregulated genes RHEB and the upregulated
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(a) (b)

(c)

Figure 12: (a)A plot depicting the genes that are upregulated and downregulated in B cells.
Note that all genes of interest are downregulated significantly. The line depicts 0.05.(b) RPS6,
a ribosomal subunit, is downregulated in B cells. (c) All cell types are shown here, as is the
the full PI3K pathway as well as CDK2NA expression. White space indicates no expression.

gene EIF4EBP1 are in the mTORC1 pathway related to protein synthesis. This suggest a

reduction in both inflammatory response and cell proliferation, which is consistent with

a reduced immune response. T cells also show a similar state, with synthesis inhibitors

upregulated and synthesis promoters downregulated (fig. 13b), suggesting a quiescent state,

Furthermore, SLA is upregulated; SLA is a T cell response inhibitor that is linked to mTORC
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(a) (b)

(c)

Figure 13: (a)A plot depicting the genes that are upregulated and downregulated in myeloid
cells. The line depicts 0.05.(b) The same style of plot as (a), except for T cells (c) All myeloid

cell cluster are shown here, as is the the full PI3K pathway as well as CDK2NA expression.
White space indicates no expression. White space mainly appears in tumor-derived myeloid

cells.

signaling pathways, suggesting that primary activation of T cells is decreased in a mTOR

dependent way. There is virtually no opioid receptor presence in T cells, including the TLRs

somewhat surprisingly, as TLRs are known to express on T cells.50 However, OGFR is shown

to have a significantly greater presence in the TME in T cells (fig. 14a). The myeloid cells do

show some opioid receptor presence (fig. 14b), but primarily in clusters that are found outside

of the tumor (fig. 14). This suggests that though some myeloid cells may be responsive to

opioids, they are unlikely significantly responsive within the tumor. In fact, TLR4 is found

to be negatively expressed in myeloid tumor tissue (q=1.31e-4, log fold change=-0.491).
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Both fibroblasts and endothelial cells show similar patterns of upregulation and down-

regulation, with a large number of relevant genes upregulated (fig. 16). However, a detailed

analysis of these phenotypes is outside the scope of this thesis, due, in part, to the lack of

in-depth study of these cell types in the tumor microenvironment. Suffice to say, pro prolif-

eration genes are present and upregulated, which may drive pro tumor signaling within the

TME. Similar to B cells, fibroblasts show almost no expression of opioid related channels

fig. 14b. Endothelial cells do have receptors present in cells likely present in the tumor mi-

croenvironment fig. 14b. However, none are significantly expressed and may just be normal

expression of receptors that are suggested respond to opioids in normal tissue. Because of

the low or non-differential expression of opioid related receptors in stromal cells, it appears

(a) (b)

(c)

Figure 14: (a) OGFR is differentially expressed only in T cells and tumor cells, even though
it shows expression in most cell types. (b) Weak expression for all opioid receptors, except

OGFR. Minimal expression is shown for all other cell types. These are normalized using the
same strategy in fig. 11c. (c) Myeloid cells show segregation by cluster when the opioid

receptor expression is measured. These are normalized using the same strategy in fig. 11c
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(a) (b)

Figure 15: (a) Expression of relevant genes in endothelial cells. (b) Expression of relevant
genes in fibroblast cells. Both cell types predominantly show upregulation of relevant genes,

though some are downregulated, including a mediator of tumor suppression, CDKN1A.

that the likely target of opioids in lung cancer is the tumor itself. Though µ opioid recep-

tors were not found to be significantly expressed, this may be due to just lack of prominent

expression. TCGA data from bulk shows that µ opioid receptors are expressed at very low

levels, about 1000x less prominent than OGFR fig. 16b. However, it is still differentially

expressed (q=8.877e-5,log Fold Change=2.073) in the bulk data, which may explain some of

the results mentioned in section 2.5.2, and a trace amount of OPRM1 is detected in tumor

cells (fig. 16a).

5.2 Triple Negative Breast Cancer Analysis

Triple negative breast cancer analysis was less targeted. Because of this, results were more

hypothetical and used the bulk sequencing data to greater extent. This was also necessary

because of the relatively small number of cells that the original data set had. Because a vast

majority of the cells were epithelial, or putative tumor cells, power was significantly reduced

to make any type of conclusion.
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(a) (b)

Gene Mean log Fold Change q Value
OGFR 2542.7 -0.085 0.397
OGFRL1 2372.5 -0.361 0.00382
OPRD1 93.0 2.284 1.19e-17
OPRK1 60.4 2.050 5.88e-07
OPRL1 204.8 0.134 0.351
OPRM1 1.3 2.073 8.88e-05
TLR2 2427.2 -0.531 0.000867
TLR4 1124.7 -1.573 3.47e-27

Figure 16: (a) Plots of OPRM1 expression by cell type in LUAD. Note that only T-cells and
tumor cells have any form of expression. This may fit in with the immunosuppressive nature
of opioids. (b) Opioid receptor data from TCGA bulk RNA sequencing. Though the OPRs,

except L, all showed differential expression in bulk, this signal is not picked up in scRNA
likely because of the small amount of expression as shown by the mean.

(a) (b)

Figure 17: (a) Analysis of triple negative breast cancer TCGA data shows that most opioid
receptors are upregulated. Importantly, TLR4 is downregulated and µ opioid receptor is not
differentially expressed. (a) TCGA data shows the normalized expression levels of each of the

target receptors. Importantly, the OPR receptors all have small mean expression levels,
similar to LUAD, as compared to the endogenous opioid receptors and the TLRs.
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5.2.1 Triple Negative Breast Cancer TCGA Data

TCGA RNA-seq data on TNBC patients was combined with normal breast tissue RNA-seq

data. The panel of opioids used in lung was also used here. fig. 17a shows that 6 of the eight

opioids are differentially expressed between bulk tumor and normal tissues. One surprising

non-significant gene is the µ opioid receptor. However, similar to lung tissue, the receptor is

expressed in very small quantities, approximately a 1000x less prominent than OGFR again

(fig. 17b). Thus, it is particularly difficult to measure these values in scRNA-seq, as there

just is not enough RNA to amplify.

5.2.2 Triple Negative Breast Cancer scRNA-seq Data

Differential expression was carried out between cell types within the tumor microenviron-

ment. Within breast cancer, it appears that a majority of the differential expression happens

within immune cells. For OGFR, TLR2, and TLR4, all show significant upregulation in at

least one type of immune call (fig. 18). OPRD and OPRM were both not sufficiently ex-

pressed at the single cell level to be included in this analysis. As opposed to lung, B-cells

seemed to overexpress OGFR as compared to the other cell types, being significantly up-

regulated against both epithelial (tumor) and stroma cells. Macrophages and T-cells also

had increased OGFR expression over tumor cells. Macrophages contained the highest ex-

pression of OGFRL1, as well as TLR2, even amongst the immune cells. T cells also slightly

expressed TLR2 more significantly than B cells. Finally, TLR4 showed significant expression

in endothelial tissue over epithelial tissue and T cells ,and once again, very strong expres-

sions in macrophages. However, based on the data from the TCGA indicating that TLR4

is downregulated, it may be less expressed. OPRK does not show significant expression

quantitatively; however, qualitatively it only seems to be expressed strongly in epithelial or

tumor cells fig. 18d. This may be in line with protective effects seen in melanoma.72 This

seems to agree with the conclusion from the retrospective data that opioids are protective,
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(a) (b)

(c) (d)

Figure 18: (a)(b)(c) These plots depict the q values and log2 fold changes in each square.
The fold change is calculated as y/x. Cells that are colored are significantly expressed, with
blue representing up regulation and red representing down regulation when read from left to

right.(a) OPRK is expressed highly in epithelial cells, though not significantly.

as TLR4 is supposed to be significantly pro-inflammatory. The evidence in breast seems to

suggest the opposite as in lung; the main driver of sensitivity to opioids is mediated through

immune cells, as opposed to direct interaction with the tumor.
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6 Discussion and Conclusion

Trends can be pulled from this genomic data to establish the effects of opioids in these

cancers. Here, we generate some hypotheses as to the biochemical nature, based on the

retrospective clinical analysis and this thesis.

6.1 Lung Adenocarcinoma Hypotheses

Based on the IMPACT panel that was used to analyze the clinical cohort, the effect of

opioids given intraoperatively is being modulated by mutations in the PI3K pathway. On

further analysis, tumor cells were noticed to differentially express many genes in this pathway.

Though downstream inhibitors were upregulated, the drivers behind the signaling cascade,

the PIK3R regulatory genes, were mostly upregulated as well. This suggest a signaling cas-

cade where negative feedback loops are still working, but not enough to prevent runaway

cell proliferation and survival through both mTORC pathways. Further, other cells in the

tumor microenvironment, particularly B cells and T cells (aka tumor infiltrating lympho-

cytes), show significant upregulation of suppressing elements or downregulation of promoting

elements in the PI3K pathway. This suggests that an opioid’s primary effect is exerted on

the tumor directly.

Though scRNA-seq data only picks up OGFR, this is thought to be protective and anti-

tumor. However, when expanding to bulk sequencing, it becomes clear that OPRM1, the

primary pro-tumor receptor, is upregulated. A minor trace of this signal can be picked up on

T cells and tumor cells. This seems to suggest that both the immunosuppressive elements of

opioids, as well as the pro-tumor elements can be triggered through this receptor still.53 This

is in line with the analysis from the clinical cohort that opioids are harmful to long-term

survival.
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6.2 Triple Negative Breast Cancer Hypotheses

Retrospective clinical data showed that in a large cohort of surgical triple negative breast

cancer cases, opioids had the opposite effect by being protective. Exploratory analysis into

the TCGA suggests that triple negative breast cancer patients do not differentially express

OPRM1. Thus, it is likely other pathways that are making an effect. In particular, analysis of

the single cell data suggests that any protective pathways are likely to be found in immune

cells, as they strongly express the receptors. One exception to this may be the OPRK1

receptor that is thought to be protective and is found on putative tumor cells.

The first gene to stand out is OGFR. This gene is thought to have a suppressive effect on

the immune system. However, such suppression may not be negative. An overactive immune

system in cancer can lead to a muted immune response, through regulatory compensation.

More research needs to be done on the exact role of OGFR in mediating the effect the immune

system in diverse cancer phenotypes. Further, both TLR2 and TLR4 show upregulation.

TLR2 is somewhat interesting; though it is known to possibly cause a shift from the M2

pro-tumor macrophage type to M1 anti-tumor,73 the exact role of TLR2, as to whether it

is a receptor or a downstream target of opioids, is still unclear. However, it is interesting

that either way opioids could be inducing a shift towards the M1 phenotype. Finally, TLR4

appears broadly in immune cells. However, it is quite greatly downregulated in bulk tumor

sampling, suggesting that its inflammatory role at worsening tumors may be reduced. These

developments suggest many new and exciting avenues that can be opened up from a clinical

and basic science view.

6.3 Basic Heuristic Oncoanesthetic Model

Applying the above hypotheses to the broader field of oncoanesthesia may allow creation of

a generalized model. While this model may not be generalizable between cancers, it allows
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for the development of a parametric model that can combine the two relatively disparate

areas of pathway analysis and receptor analysis. Basically, the change in survivability S can

be given by

S =
∑
c

∑
r

DcEr|cIr (1)

where r and c are the full receptors and cell types respectively. D represents the downstream

pathways and effects for a given cell type, E represents the expressivity of receptors given

a single type and I represents whether the impact of the receptor is positive or negative.

While this model may be simplistic, it gives a roadmap for future expansion and each term

may be expanded upon to give a better model in the future.

6.4 Future Directions

There are many future directions suggested by work in this thesis. Here, a few are described.

6.4.1 Oncoanesthesia Future Experiments

The analysis here suggests that more in-depth study needs to be done on particular path-

ways, genes, and receptors to discover how they fit into a broader story. This should include

both clinical and genomic testing. By analyzing transcriptomes and relating to survival out-

comes, the precision in precision medicine really comes into play. Furthermore, more scRNA

sequencing should be carried out in triple negative breast cancer and lung adenocarcinoma

patients, with focusing on matching normal tissue to tumor tissue. This would enhance the

power of any differential expression study. One interesting experiment that may be hard to

do at least in tumor could be a time-based RNA sequencing of a patient to discover what

the changes that anesthesia induces. This may be more easy to work into an animal model.

Finally, investigations at a cellular level should take place. These can include down-
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Figure 19: Though scRNA-seq is able to pick up weakly expressed genes, the variance of
such measurement is extremely high. The y axis describes mean normalized standard

deviation, while the x axis plots the mean of bulk RNA expression. As it can be seen, the
variance due to dropout is exceptionally high. This suggests that cells are truly not expressing

weak signals at appreciable amounts, and alternate experiments may be needed to probe
weakly exhibited gene such as OPRM1. (Kendall’s Tau -0.623).

stream analysis of the entire PI3K pathway to binding assay experiments to elucidate where

exactly opioids bind and what occurs in cells. In general, experiments contextualized to

in vitro tumor proliferation may fail to take into account the full impact of the tumor mi-

croenvironment. In this regard, animal models may be useful in studying in vivo effects

do caution should be taken as these animals may not mirror humans. These non-genomic

experiments may be useful because signaling cascades do not require vast expression at the

primary stages. This can be seen in OPRM1, which is not expressed at any appreciable

amount but has vast downstream effects. This is particularly true in the context of scRNA

experiments (fig. 19).
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6.4.2 Machine Learning Validation of Clustering

One initial area of exploration is the use of machine learning tools to validate possible

clustering. By withholding a set of cells of known or hypothesized origin and training a

model on the possible clustering, the cells of known origin can be used a validation set.

Further, this can confirm whether a clustering strategy was accurate by seeing if decision

boundaries are truly replicapable. This is an ongoing field of research and should be studied

with detail.

6.5 Conclusion

RNA sequencing offers an in-depth look into cellular processes. Here, it is used to explore

the space studying the interplay between oncology and anesthesia. By analyzing at a highly

granular level, the specific types of cancer can be interrogated in great detail. The work

here suggests that molecular hypotheses can be developed from publicly available data to

corroborate restrospective clinical results. Further work in establishing the true nature of

these effects lead by these results can provide interesting results.
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