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Abstract

Introduction: Glioblastoma multiforme (GBM) is an invariably fatal malignancy of the
brain. Tumors are highly migratory and resistant to treatment due to the presence of
glioma stem cells (GSCs) in the tumor mass. The RNA modification N®-methyladenosine
(m6A), and the enzymes that remove it, have recently been implicated in GSC tu-
morigenesis, self-renewal and proliferation. Entacapone, an FDA-approved catechol-O-
methyltransferase inhibitor for Parkinson’s disease, has recently been shown to inhibit
FTO, an m6A demethylase, and ameliorate the malignant properties of GSCs. The effects
of FTO inhibition with entacapone on specific transcripts, and the mechanism relating
these changes to the phenotypic transformation in GSCs, is not yet known.

Methods: GSCs were isolated and cultured from GBM tissue samples resected dur-
ing surgery. Cells were treated with either entacapone or dimethylsulfoxide (DMSO) as
an inert control, and RNA was isolated from the treated cells. The locations of all m6A
sites in the transcriptome along with their change in abundance were determined with
single-nucleotide resolution m6A sequencing, and transcripts were characterized by their
change in m6A entropy, a novel analytical technique developed for this study.

Results: Due to the small site abundance values in this dataset, changes in entropy
accurately capture changes in m6A abundance. The vast majority of sites occurred near
stop codons, though the transcripts with most extreme entropy change were relatively
enriched for sites in the 5’UTR. Gene set enrichment analyses of these transcripts showed
a preponderance of nuclear-localizing, DNA-binding, transcription-regulating genes, i.e.,
transcription factors. Important genes and pathways in cancer were found to have large
changes in entropy, including Notch1l and related ligands. Transcriptional complexes me-
diated by Notchl also experienced notable methylation changes.

Discussion: Inhibiting FTO with entacapone causes transcript-specific m6A changes,
altering stability of certain gene-regulatory molecules. Disruption of Notchl and its sig-
naling pathway may result in a change in expression of specific transcripts that cause
reduced GSC invasion and self-renewal by altering stability of related transcription fac-
tors.
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1. Introduction

Glioblastoma multiforme (GBM) is the most common primary brain tumor, accounting
for 70% of all gliomas [1}, 2]. It is also the most lethal, with median survival time of 14.6
months and nearly 100% final mortality rate [3, 4]. The current method of treatment
is maximal safe resection and then radiation alongside temozolomide chemotherapy [5].
Despite this multimodal therapy, tumor recurrence is inevitable due in large part to the
presence of glioma stem cells (GSCs) [6]. These cells are genetically characterized by spe-
cific lesions and DNA methylation patterns|7, |§]. GSCs are incredibly heterogeneous and
highly plastic, able to transition reversibly between stem-like and differentiated states
and dynamically express new phenotypic markers in new tumor microenvironments [9,
10% |11}, |12]. Such dynamic cell phenotypes may be a result of RNA modifications such as
NS-methyladenosine (m6A).

Eukaryotic messenger RNAs containing the consensus sequence GAC (70%) or AAC
(30%) may be methylated on the central A, and this defines the common m6A RNA
modification [13]. Writer enzymes Mettl3/14 or eraser enzymes FTO and ALKBHS5 re-
spectively methylate or demethylate those sites|14]. Transcripts are usually modified with
mO6A inside large exons and around stop codons, and such action has been shown to mark
the transcript for degradation|15, |16]. This suggests m6A modulates translational effi-
ciency across the transcriptome, and m6A presence on a transcript serves to “destabilize”
it]16].

Studies have shown that GSC self-renewal and tumorgenicity are regulated by specific
methylation activity of m6A readers and writers |17} |18, |19]. The m6A eraser FTO has
been shown to regulate translation of a specific set of mRNAs, including cancer stem-
ness genes such as GSK3B, PTCHI1, Notchl, ALCAM, and DLL1 |20, 21]. FTO is a
known regulator of cancer stemness, and inhibition blocks self-renewal in GSCs [18, 22].
The drug entacapone, a known inhibitor of catechol-O-methyltransferase and an FDA-
approved therapy for Parkinson’s disease, was recently shown to inhibit FTO and increase
mO6A levels in human cell lines [23, 24]. Higher-resolution data on m6A abundance across
the transcriptome and transcript regions, and a way to quantify that abundance at a
transcript-specific level, will enable better understanding of the mechanism by which en-
tacapone affects GSCs.

This report uses single-nucleotide resolution m6A sequencing to compare m6A profiles
of entacapone-treated and untreated (DMSO-treated) GSCs. I introduce transcriptomic
m6A entropy as a quantitative way to assess changes in m6A regulation and show that
it is proportional to m6A abundance changes in this dataset. I show that the transcripts
associated with the most extreme methylation change are transcription factors and other
central regulatory molecules, as well as key transcripts driving cancer stemness, including
Notchl and related transcripts. Further, I present evidence supporting Notchl-mediated
shifts in transcriptional profiles via change of transcription factors along CSL genes. Fi-
nally, I present novel ontological and transcriptome-wide patterns in methylation and
propose a model to explain them.



2. Analyses

2.1 m6A Entropy

The GSC transcriptome consists of a population of RNA transcripts, each of which may
have a single copy or many copies. Each copy of a given transcript has some number
of m6A sites which are either occupied or not on each copy. Thus, rather than consider
m6A abundance as a deterministic quantity, it is more biologically accurate to consider
it a stochastic signal. Any copy of a single RNA transcript contains some combination of
occupied and unoccupied m6A sites. I define the m6A site abundance as the percentage
of occupied sites out of the total number of transcript copies (input). Thus, site abun-
dance is a probability of a binary state: a Bernoulli random variable, which has average
information content, or Shannon entropy, given by:

H(ps) = pslog(ps) + (1 — ps)log(1 — ps) (2.1)

where py is the m6A site abundance, the probability of site s being occupied.

Entropy should be interpreted here as the amount of “uncontrolledness”, or “freedom”
a site experiences: if a site has abundance close to 0.5, the entropy is maximum, and there
is likely minimal regulatory control occurring. The site is as likely methylated as not, and
therefore is maximally “free”. If a site has a more extreme probability of occupancy, such
as 0.1 or 0.9, then entropy is lower than maximum, and the cell is more closely regulating
or controlling the amount of methylation at that site; the methylation at that site is less
freely determined. Sites with occupancy probability of 0 or 1 are under complete control
and therefore have 0 entropy. This is visualized in Figure [2.1]

Since the vast majority of sites on the same transcript are separated by at least 100
bp, each site is assumed to be independent. So the m6A entropy of an entire transcript
is just the sum of its site entropies:

H, = zn:H(ps) (2.2)

where p; is the probability of a methyl group occupying site s (the abundance of site
s), and n is the total number of sites.

Finally, to avoid entropy calculations being dominated by transcripts with large num-
bers of sites as Figure demonstrates, equation is adjusted by dividing by the
number of sites on the transcript:

1 n

s=1
Thus, m6A entropy represents the average amount of regulation of m6A occurring

over the entire transcript.
The m6A entropy change of a transcript was calculated as the entropy of the transcript



Entropy as a function of abundance
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Figure 2.1: The relationship between a transcript’s entropy, the number of sites it has,
and the abundance of those sites, assuming all sites have the same abundance.

with entacapone treatment transcript minus the entropy of the transcript with DMSO
treatment:

AHt - Ht,E - Ht,D (24)

The m6A entropy change can be considered the “change in regulation” a transcript’s
mo6A sites undergo upon entacapone treatment

2.2 m6A Euclidean Distance

Euclidean distance is a familiar metric derived from the Pythagorean theorem and often
used to quantify read counts in RNA sequence analysis. The Euclidean distance between
each entacapone-treated and DMSO-treated transcript was also calculated from m6A
abundances, to provide a more straightforward metric of m6A abundance change on a
transcript.

The Euclidean distance is given by:

n
= J LS (e — oy (2.5)
=1
where p, is the entacapone-treated abundance at site s, p, is the DMSO-treated
abundance at site s, and n is the number of sites on the transcript.
Since Euclidean distance is a proper measure it is always nonnegative. For the purpose
of comparing changes in m6A abundance, which can be positive or negative, I calculated



the Euclidean distance and multiplied it by a sign derived according to the following
formula:

(*" = sgn (En:(ps - m)) J :Lf:(ps — pi)? (2.6)

s=1

2.3 Visualization

Pathway and gene ontological category enrichment, as well as related plots, were gener-
ated using the enrichR library from CRAN. Transcript plots were created by extracting
the CDS start and end regions and the transcript length from the provided annotation
file for each transcript and then plotting the log2 fold change in site abundance against
the index of the site. Plots of multiple transcripts were created with the same process,
but then normalizing the lengths of each of the 5" untranslated region (5’'UTR), coding
sequence (CDS), and 3" UTR. This allowed multiple transcripts of different length and
region sizes to be visualized together.
All scripts used for analyses are available for download at this GitHub repository.
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3. Results

3.1 Entropy scales with abundance change

The data contained 8,845 m6A sites across 4,451 transcripts for 4,397 genes. No analyzed
site had abundance greater than 0.4 (Figure ) Since abundance was always less than
0.5, entropy is expected to be always proportional to the Fuclidean distance in this
dataset, since entropy is monotonic increasing until abundance exceeds 0.5 (Figure .
Indeed, the relationship between Fuclidean distance and entropy change for the entire
transcriptome was roughly linear, with R? = 0.59 (Figure ) Wilcox’s rank-sum test
showed that the differences in abundance captured by changes in entropy are in fact
distinct (p < 5e-14), whereas differences in abundance on transcripts chosen by entropy
versus Euclidean distance are not (p > 0.09) (Table [5.1)). These findings indicate that
entropy, chosen as a way to quantify the amount of regulation experienced by the m6A
sites on a transcript, also directly quantifies m6A in this dataset.

There was no net gain or loss of m6A in this dataset. Of the 4,451 transcripts, 2,064
(46%) increased entropy and 2,229 (50%) had a positive signed Euclidean distance. Of
the 8,845 sites, 4,313 (49%) increased abundance.

Transcripts with the most extreme changes in entropy also showed the most direct
correlation between m6A entropy and Euclidean distance (Figure ) These transcripts
were examined for trends in site location and gene ontology.

3.2 mG6A sites are sparse across the transcriptome
but precisely targeted

Of the 4,451 transcripts in the data, 4,346 (98%) were protein-coding mRNAs, and an
equal proportion of sites (8,663, 98%) were distributed across them (Figure [3.1]A). Most
transcripts contained a single m6A site, though the mean number of sites per transcript
was 2.01, and some transcripts had as many as 26 sites (AHNAK and MKI67)(Figure
3.1B). Sites were enriched near the stop codon or in the CDS but just 260 (3%) are in
the 5 UTR (Figure [3.4)).

Transcripts exhibiting the most extreme entropy changes were relatively enriched for
sites in the 5" UTR (Figure . The most extreme 600 transcripts, containing just 7.8%
of all sites on coding transcripts, encompassed 22% of all 5> UTR sites. The same trend
was not observed in the most extreme 800 sites by fold change, nor in the middle 1600

sites by fold change, all of which contained just 2-4% of all 5’'UTR sites (Figure [3.5).
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Figure 3.1: A) Distribution of m6A site abundance values in each treatment group. B)
Correlation between site entropy and FEuclidean distance in the data. Top 300 transcripts
by entropy increase are labelled in green, and the top 300 by entropy decrease in blue.
These transcripts were selected for further analyses.
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A) Top 300 Transcripts by Entropy Change
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Figure 3.3: Map of m6A sites in transcripts selected by A) greatest entropy increase, B)
greatest entropy decrease, and C) minimal change in entropy. Diagrams were made by
normalizing all transcript regions to a standard length and plotting all the sites together.
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Figure 3.4: Map of all m6A sites in the transcriptome. Diagram was made the same
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represents the CDS.
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A) Top 800 Sites by Fold Change
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Figure 3.6: Biological processes involving the transcripts with most extreme entropy
change.

3.3 Transcription factors and other central regula-
tory molecules experience extreme m6A abun-
dance changes

Gene set enrichment analyses showed that many of the top 300 transcripts by entropy
increase were DNA or protein binding, while the bottom 300 transcripts were enriched
for DNA binding but not protein binding (Figure . Both categories contained high
numbers of genes for proteins localized to the nucleus or intracellular membrane-bound
organelles (Figure , and for regulators of transcription and gene expression (Figure
3.8]). These findings suggest that m6A sites are enriched on transcripts of transcription
factors.

3.4 Key cancer stemness genes, including Notchl and
related genes, show important methylation changes

KEGG pathway analysis indicated that the most extreme transcripts were enriched for
signaling pathways associated with cancer when dysregulated (Figure . These include
the Notch, Hedgehog, TGF—beta, ErbB, and GnRH pathways, as well
as pathways related to cell cycle and, for glioblastoma, axon guidance.

28 genes regulating cancer stemness were discovered with m6A sites and are profiled
in Figure 3.12] In this subset of transcripts, clusters of sites tend to be in or near the
CDS, whereas lone sites could be anywhere. ERBB2 is an obvious exception to this rule,
which is notable because genes in the ErbB signaling pathway were enriched among the
top 300 transcripts with increased entropy.
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Cellular components enriched by top 300 transcrigts
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Figure 3.7: Cell components which contain or are comprised of the transcripts with most
extreme entropy change.
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Figure 3.8: Molecular functions of the transcripts with most extreme entropy change.
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KEGG pathways involving the top 300 transcripts
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Figure 3.9: KEGG pathway enrichment of the transcripts with most extreme entropy
changes.

Notchl exhibited the sixth highest entropy change and the 12th highest signed Eu-
clidean distance out of all transcripts, and its single site was in the top 2% of abundance
increases. Four transcripts in the Notch signaling pathway decreased entropy: ATXNI,

DLL1, DVL1, and PSEN1 (Figure [3.11]).

3.5 Treatment alters Notchl-mediated transcription
regulators

CSL proteins are the primary nuclear effectors of the Notch signaling pathway[30]. They
transition from transcriptional repression to transcriptional activation when bound by the
Notchl intracellular domain (Notch1-IC), which must be cleaved from Notchl protein[31].
This change is accompanied by loss of repressive complex proteins N-CoR and HDAC1 and
the recruitment of activator complex proteins MAML1 and p300 alongside Notchl—IC.
Transcripts of all these complex proteins possessed m6A sites. Transcripts NCOR1 (for
N-CoR) and HDACI1 respectively increased and decreased entropy, and each had one site.
Transcripts MAML1 and EP300 (for p300) had six and seven sites, respectively, and both
increased entropy(Figure [3.11]).
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Figure 3.11: Transcripts involved in Notchl action. A) Transcripts of the CSL repressor
complex have a single site in the CDS. B) Transcripts of the CSL activator complex
have many sites throughout the CDS and near the stop codon. C) The four enriched
transcripts in the Notchl pathway, ordered by magnitude of abundance change. Most
sites in this subset of transcripts are around the stop codon.
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4. Discussion and Future Directions

The apparent symmetry of entropy and abundance change is the result of methodological
constraint in this study. All site abundances were normalized against the site with maxi-
mum abundance; since this site had very large abundance, all other site abundances were
forced into the bottom left corner of Figure 2.1 where entropy was positively correlated
with abundance. In other datasets with a maximum abundance closer to the median, the
relationship between entropy and abundance may not be linear.

Furthermore, RNA transcripts have one or more copies in cells, and single-nucleotide
m6A sequence data contains no information about the prevalence of each transcript. The
finding that approximately equal numbers of sites and transcripts increased and decreased
entropy cannot be taken to imply that global m6A in cells was unchanged with treatment.
The possibility that subsets of transcripts are more prevalent with entacapone treatment,
and that the m6A abundance on these transcripts is unusually high or low, means that
there may be a global increase or decrease in m6A abundance that is not captured by
this study.

Enrichment of m6A sites in the 5’'UTR on transcripts of extreme entropy change in
response to entacapone treatment has not been seen in any previous literature. Whether
these transcripts have a special regulatory role or are merely “along for the ride” on tran-
scripts driven by other sites may be answered by comparing the co-occurrence of these
sites with other sites of high abundance change or around stop codons. Further inves-
tigation is required to determine the consequence of these sites for transcript regulation
and GSC physiology.

Transcription factors and signal transduction molecules were found to be prominent
among transcripts with extreme entropy change. Considering that the presence of m6A
destabilizes transcripts, it appears that entacapone de-enforces certain transcriptional
programs by destabilizing transcripts of certain transcription factors, while favoring oth-
ers by decreasing m6A and increasing stability.

Entacapone uses this mechanism to dysregulate transcripts in critical cancer path-
ways, usually in the CDS or the very beginning of the 3° UTR. Enrichment of 5> UTR
sites was not seen among cancer stemness genes, which suggests that whatever process
drives 5" UTR methylation is entirely separate from the stop-codon-centered mechanism
regulating transcripts of cancer stemness genes. Notchl is highly destabilized according
to this study, while the genes in the Notch pathway decreased entropy, implying increased
stability. Two of these are antagonists of Notch1-1C, including DLL1 and ATXN1 [32} 133].
Another, DLV1, is associated with loss of Notchl [34]. In contrast, PSENI is required
for effective Notchl cleavage and signaling[35]. Nevertheless, these findings suggest that
entacapone increases Notchl signaling by destabilizing Notchl and generally stabilizing
transcripts that negatively regulate Notchl1.

The theory that entacapone restores lost Notchl signaling is also supported by m6A
changes on transcripts coding for CSL complex proteins. The large number of sites on
activator complex transcripts MAML1 and EP300 suggest that these transcripts play an
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important role that demands intense regulation, and their increase in entropy implies
they were destabilized, which would favor the repressor complex that occurs without
Notch1-IC. Confirming this is the entropy decrease and stabilization of HDAC1. The
Notch pathway mediates GSC aggression, invasion, and stemness, so these changes may
contribute to the GSC phenotypic change observed with entacapone treatment [21].

4.1 Conclusions

Inhibiting FTO with entacapone causes transcript-specific m6A changes. These m6A
changes specifically stabilize or destabilize certain transcripts of gene-regulatory molecules,
which alters the GSC transcriptional profile. CSL-regulated genes are repressed by desta-
bilizing Notchl and stabilizing its negative regulators, resulting in reduced GSC invasion
and self-renewal.
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5. Appendix

5.1 Laboratory Methods

5.1.1 Ethics statement

The institutional review boards at Rhode Island Hospital and Geisinger Clinic approved
the collection of de-identified patient-derived GBM tissue. All participants provided
written informed consent for the use of glioblastoma tissue for research purposes.

5.1.2 Cell Culture

Primary GSC spheres were cultured from human glioblastoma samples according to an
established protocol[36]. The GSC strain used in this study was authenticated by the
American Type Culture Collection using Short Tandem Repeat (STR) analysis. All hu-
man primary cells used were between passages 5-20. All cultures were routinely tested for
mycoplasma contamination using the LookOut Mycoplasma PCR Detection kit (Sigma).

GSCs were cultured on fibronectin-coated plates 10 pg/mL, MilliporeSigma) in a
medium of 1X Neurobasal Medium (Thermo Fisher), 50X serum-free supplement, minus
Vitamin A (Thermo Fisher), 100X L-glutamine, 2 mg/mL Heparin (STEMCELL Tech-
nologies), 20 ng/mL epidermal growth factor (Thermo Fisher), 20 ng/mL basic-fibroblast
growth factor (Thermo Fisher), and 1% Antibiotic-Antimycotic (Thermo Fisher). To in-
duce differentiation, GSCs were cultured for 7 days in a medium of 1X Neurobasal Medium
(Thermo Fisher), 50X serum-free supplement, minus Vitamin A (Thermo Fisher), 100X
L-glutamine, 10X fetal bovine serum (Gemini), and 1% Antibiotic-Antimycotic (Thermo
Fisher).

5.1.3 mRNA isolation

GSC spheres were treated either with entacapone (40 pM x 2 replicates) or dimethyl-
sulfoxide (DMSO, 40 pM x 2 replicates) for 48 hours. Total RNA was isolated from
both groups using RNeasy Mini Kit (Qiagen), and subsequently treated with RiboMi-
nus (Thermo Fisher) to remove ribosomal RNA. From this, mRNA was purified with
Dynabeads mRNA purification kit (Invitrogen).

5.2 Sequencing

5.2.1 Single-Nucleotide m6A Sequencing

Isolated RNA samples were sent to Arraystar, Inc for sequencing according to an estab-
lished method [37], 38, 39]. Briefly, each RNA sample was divided into two fractions, one
of which was treated with MazF enzyme, and the other not. MazF enzyme cleaves RNA

22



at unmethylated ACA sites. Since m6A only occurs at the consensus ACA site, cleavage
is conditional on m6A presence at that site. These separate MazF-treated and MazF-
untreated groups were amplified and treated respectively with Cy5 or Cy3 dye-labelled
RNAs. The fractions were then combined, hybridized on a m6A Single Nucleotide Array
slide, and scanned using an Agilent Scanner G2505C.

5.2.2 Calculating m6A Abundance

At Arraystar, Agilent Feature Extraction software (version 11.0.1.1) was used to analyze
array images. Raw intensities of MazF-Digested (MazF digested RNA, Cyb5-labelled) and
MazF-Undigested (total RNA, Cy3-labelled) were normalized with average of log2-scaled
Spike-in RNA intensities. m6A site abundance was calculated for the m6A site methy-
lation amount based on the MazF-Digested (Cyb-labelled) normalized intensities. These
data were annotated with genome build hgl9. It is critical for experiments validating
transcript diagrams generated in this study that the experimenter use the same annota-
tion file used by the sequencing firm.

Thus the data I used for analyses were prepared. The data consisted of a list of sites,
where each line contained a refGene transcript ID, the integer indicating the index in the
transcript containing the m6A site, and a series of float values indicating the m6A abun-
dance in each replicate of entacapone-treated and DMSO-treated GSCs. Other lower-level
information, such as the signal intensity from the sequencing array, were included in the
datafile from the sequencing company but ignored. Before entropy analysis, I scaled all
mo6A site abundances by the maximum observed abundance out of all the groups, to avoid
the computational and interpretational consequences of positive logarithms and negative
entropies while preserving differences between replicates, or treatment and control.
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Group 1 Group 2 Wilcox Rank-Sum Test Result
Sites in... Treatment Median m6A Sites in... Treatment Median m6A w P-value
abundance abundance
Top 300 Entacapone 0.0373 Top 300 DMSO 0.0278 74048 1.837e-14
transcripts by transcripts by
entropy entropy
change change
Bottom 300 Entacapone 0.0202 Bottom 300 DMSO 0.0302 35123 <2.2e-16
transcripts by transcripts by
entropy entropy
change change
Top 300 Entacapone 0.0373 Bottom 300 Entacapone 0.0302 91769 <2.2e-16
transcripts by transcripts by
entropy entropy
change change
Top 300 DMSO 0.0278 Bottom 300 DMSO 0.0302 52543 0.09429
transcripts by transcripts by
entropy entropy
change change
Top 300 Entacapone 0.0364 Top 300 DMSO 0.0299 339070 2.291e-09
transcripts by transcripts by
Euclidean Euclidean
distance distance
Bottom 300 Entacapone 0.0249 Bottom 300 DMSO 0.0336 129250 <2.2e-16
transcripts by transcripts by
Euclidean Euclidean
distance distance
Top 300 Entacapone 0.0364 Bottom 300 Entacapone 0.0249 302795 <2.2e-16
transcripts by transcripts by
Euclidean Euclidean
distance distance
Top 300 DMSO 0.0299 Bottom 300 DMSO 0.0336 204169 0.0005205
transcripts by transcripts by
Euclidean Euclidean
distance distance
Top 300 Entacapone 0.0373 Top 300 Entacapone 0.0364 134022 0.09369
transcripts by transcripts by
entropy Euclidean
change distance
Top 300 DMSO 0.0278 Top 300 DMSO 0.0299 122135 0.4203
transcripts by transcripts by
entropy Euclidean
change distance
Bottom 300 Entacapone 0.0202 Bottom 300 Entacapone 0.0249 84887 5.201e-06
transcripts by transcripts by
entropy Euclidean
change distance
Bottom 300 DMSO 0.0302 Bottom 300 DMSO 0.0336 94656 0.0326
transcripts by transcripts by
entropy Euclidean
change distance

Figure 5.1: Results of Wilcox’s rank-sum test. P-value indicates probability that the m6A
site abundances encompassed by the two tested groups are from the same distribution.
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