
Deep Generative and Predictive Modeling of Single
Cell RNA-Seq Time Series Data

Justin Sanders

Advisor: Ritambhara Singh
Second Reader: Erica Larschan

A thesis submitted in partial fulfillment of the requirements for the
degree of Bachelor of Science with Honors

Center for Computational Molecular Biology

Brown University

April 2022

Abstract

Recent advances in single-cell RNA sequencing assays have opened the door to un-
derstanding biological heterogeneity at the cellular level, offering new insights into
the regulatory programs governing dynamic processes such as differentiation, cellular
reprogramming, and carcinogenesis. Modeling the temporal pattern of changes to
gene networks along such trajectories is necessary for understanding the causal rela-
tionships governing cell fate. However, single cell expression data is inherently sparse,
noisy, and high dimensional - posing a challenge to computational analysis. In this
thesis, we probabilistically model gene expression trajectories across time using meth-
ods from deep learning to address these challenges. Our proposed model consists of
two components - a variational autoencoder for learning a denoised, low dimensional
representation of the expression data and a recurrent neural network for predicting
trajectories within the learned latent space. It has previously been shown that single-
cell expression profiles lie on a low dimensional manifold in high dimensional space,
and here we test the hypothesis is that trajectories on this manifold are more easily
inferred than in the original space. We apply our method to two single cell RNA-Seq
datasets capturing mouse embryogenesis and stem cell reprogramming trajectories,
and show that predictions from our model accurately recapitulate temporal dynamics
of the data. Additionally, we demonstrate how predictions made by our model can
assist in the discovery of rare cell types and help identify genes that are differentially
expressed along trajectories.

1

Acknowledgements

I would like to thank my advisor for this project, Ritambhara Singh, for welcoming
me into her lab and providing her mentorship. Her enthusiasm and support through-
out this year have helped me grow as a researcher and encouraged me to pursue
computational biology further in graduate school.

I would also like to thank Jeremy Bigness and Jiaqi Zhang, who worked on this
project with me in the Singh Lab. Jeremy was super helpful and patient in getting
me on-boarded and up to speed with the project, and I’m grateful for all his advice
both about research and my career in general. Jiaqi was also always available to help
me out when I had questions, and helped produce many of the results that made this
thesis possible.

Finally, I am grateful to my previous advisors and mentors Bill Noble, Giancarlo
Bonora, and Sorin Istrail for shaping and encouraging my interests in computational
biology.

De appel valt niet ver van de boom.

2

Contents

1 Introduction 4
1.1 Background . 4
1.2 Single-Cell Challenges . 5
1.3 Problem Description and Related Work 6

1.3.1 Structure Model . 6
1.3.2 Dynamics Model . 7

2 Results 8
2.1 The structure model learns an accurate latent representation of scRNA-

Seq data . 8
2.2 Data augmentation with the structure model improves clustering and

cell type assignment . 11
2.3 The dynamics model can accurately generate cells from unseen future

timepoints . 13
2.4 Predicting expression from future timepoints improves the identifica-

tion of differentially expressed genes 14

3 Discussion 15

4 Methods 16
4.1 Structure model architecture . 16

4.1.1 Variational Autoencoders . 16
4.1.2 Desirable Properties of VAEs 18

4.2 Dynamics model architecture . 19
4.3 Weighting of loss terms . 21
4.4 Evaluation Metrics . 22
4.5 Data Preprocessing . 23
4.6 Training Scheme . 24
4.7 Hyperparameter optimization . 26

5 References 27

6 Supplementary Figures 31

3

1 Introduction

1.1 Background

One of the fundamental questions in systems biology is how our body gives rise to such
a diverse collection of cell types. Despite all sharing the same underlying genetic code,
heart cells, lung cells, and brain cells all express different sets of genes and perform
wildly different functions. These varied cell types arise through a process called
differentiation, by which a pluripotent cell undergoes precise epigenetic changes to
alter gene expression, transitioning it into a more specialized cell type. Understanding
the regulatory mechanisms behind this process will have direct applications in the
studies of stem cell therapies[22], carcinogenesis[21], and the biology of aging [13][29].
However, the complex regulatory networks and signalling pathways that govern stem
cell fate during differentiation are still poorly understood [15].

Recent advances in single-cell RNA sequencing (scRNA-Seq) technologies have
allowed for the large-scale measurement of the transcriptome at a cellular resolution.
This allows researchers to study differences between gene expression in individual cells
as they move along differentiation trajectories. Such analysis has demonstrated that
differentiation is a gradual, more continuous process than was previously appreciated
[1]. By performing multiple scRNA-Seq experiments at different timepoints on a
population of cells undergoing a differentiation process, researchers have produced
time series datasets that give a complete picture of key developmental trajectories
[28] [10] [25]. Beyond the study of differentiation, scRNA-Seq has also contributed
to the discovery of new rare cell types [23] and the understanding of human disease
[35] [24], as well as revealed unexpected levels of heterogeneity between individual
cells [1]. However, given the immaturity of this new data type, there is still a want of
efficient and statistically rigorous computational methods to draw insights from it.

In this paper we present two new methods solving a pair of related tasks in the
analysis of single-cell expression data. The first task is probabilistically modeling the
underlying distribution of an scRNA-Seq dataset in a way that allows for the de novo
generation of new expression profiles. Large single-cell sequencing libraries are often
prohibitively expensive to produce, so solving this task would allow researchers to
up-sample smaller datasets to better discover rare cell types and improve cell cluster-
ing. Additionally, it enables our approach to the second task, which is to model the
evolution of the probability distribution of gene expression in cells along a trajectory.
The goal is to predict the expression of cells at a future point in differentiation given
a series of scRNA-Seq measurements performed at past time points. A model that is
able to accurately predict cellular trajectories in this way would help researchers bet-
ter understand the regulatory landscape of differentiation, and would have potential
applications to cellular reprogramming and the treatment of developmental diseases.

4

1.2 Single-Cell Challenges

Working with scRNA-Seq data comes with a host of computational challenges. Be-
cause there is such a small amount of biological material in each individual cell,
single-cell sequencing methods produce data that is inherently noisy and sparse. In
particular, scRNA-Seq data shows a much higher proportion of genes with zero ex-
pression measurements in each cell than would be expected based on bulk RNA-Seq
data [16]. Correcting for this technical noise is challenging, since the full mechanisms
behind the missingness are unknown. Expression measurements may be missing inde-
pendently at random, or their missingness may be correlated with other seen and even
unseen variables. Additionally, there is a growing debate in the field as to whether
scRNA-Seq data is actually zero-inflated at all[16], with many arguing that the high
proportion of zeros in the data represents a true biological signal that shouldn’t be
corrected [31][18]. RNA transcript abundance is usually used as a proxy for gene ex-
pression in a cell, an assumption which may break down under intermittent patterns
of RNA-synthesis [26]. Thus, when developing computational methods for working
with this data, researchers must carefully consider and make explicit the assumptions
they are making about its distribution. In general, non-parametric methods that
are compatible with our current uncertainty about the nature of the data generating
distribution are desirable.

Another related challenge that is common to all analysis of high-throughput as-
says, including scRNA-Seq, is that of batch effects. There is extensive evidence that
when multiple repetitions of the same experiment are performed at different times, in
different labs, or on different sequencing platforms, the resulting data shows increased
correlation between cells from the same batch compared to cells from different batches
[34] [14]. This bias can hide biological signals of interest, and introduce misleading
structure to the data. For example, when working with time series data, differences
in gene expression between timepoints may appear artificially high due to the fact
that each timepoint was sequenced in a separate batch. Thus, when integrating data
from multiple experiments it is important to develop computational methods that are
able to handle and correct for these systematic differences between batches.

Finally, a significant hurdle when performing single-cell analysis is dealing with
the high dimensionality of the data. The increase in resolution to the cellular level has
added another rapidly growing dimension to our datasets, with recent experiments
profiling expression for all 20,000 genes across more than a million cells [6]. This poses
a significant challenge to analysis - human intuition often breaks down in such high
dimensions, and statistical and machine learning based methods quickly lose power
due to the ”curse of dimensionality” [36]. Additionally, computational approaches
must scale well in terms of runtime and memory usage. Even just realizing a full
scRNA-Seq matrix into memory can require upwards of 50GB. In order to address
these problems, it is common to apply dimensionality reduction techniques to single
cell data. This is feasible because the transcriptional profiles of cells occupy a rel-
atively low dimensional manifold within the high dimensional expression space [17].

5

Thus if we can learn a projection from the original space onto this manifold, we can
perform our computation in a much lower dimensional setting that still captures all
of the relevant variability in the data. Two popular methods for this are Principal
Component Analysis (PCA) and Uniform Manifold Approximation and Projection
(UMAP). Both have been used extensively for generating 2-Dimensional embeddings
for the visualization of single cell data [3]. They are also often applied as an initial
preprocessing step to reduce the dimensionality of the data before performing down-
stream analyses [28] [33]. However, both methods have drawbacks. PCA is fully
linear, so its embeddings are restricted to being linear combinations of the original
features which may fail to properly model non-linear expression manifolds. UMAP
embeddings, while non-linear, have been demonstrated to poorly capture the global
structure of the data [7]. Therefore, there is still a need for more general and robust
computational approaches for handling the high dimensionality of single-cell data.

1.3 Problem Description and Related Work

1.3.1 Structure Model

In this paper, we present two connected models which are useful for the analysis of
single-cell expression data. The first, which we dub the structure model, aims to
simultaneously learn a low dimensional representation of the data while modeling its
underlying distribution in a way that can easily be sampled from. Numerous methods
exist for probabilistically modeling scRNA-Seq data, based on both classical statisti-
cal models [30][27] and deep learning [12][9]. However, all four methods intrinsically
assume that the data is drawn from a Zero-Inflated Negative Binomial (ZINB) dis-
tribution. scDesign2 fits a uni-variate ZINB distribution to the expression levels of
each gene, and then uses a Gaussian copula to capture gene-gene correlations. ZINB-
WaVE also models the paramaters of a ZINB directly, with the parameters for each
gene in each cell inferred based on a regression of known and unknown covariates.
For the deep learning based approaches, scVAE uses a variational autoencoder with
a ZINB posterior and the DCA model uses a vanilla autoencoder with a focus pri-
marily on denoising and removing batch effects. Since there is no constraint on the
latent space during training, DCA learns a poorly structured latent representation
from which it is non-trivial to draw new samples.

Here we implement our structure model as a variational autoencoder (VAE). We
were motivated by the scalability of deep learning models to large amounts of data, as
well as the successes of VAEs at modeling complex probability distributions in other
domains such as images [19] and language [4]. The architecture of a VAE consists
of two dense neural networks, one mapping the input to a low dimensional latent
space (encoder), and the other mapping this latent vector back to the original input
(decoder). During training, the model is optimized to learn a low dimensional repre-
sentation of the input from which it can faithfully reconstruct the original. In order
to force the latent space learned by our model to be well behaved and easy to sample

6

from, we impose an additional training objective to force the distribution of points
in the latent space to be approximately standard normal (for a full exposition on
the theoretical background of VAEs, see section 4.4.1). While our model is similar to
scVAE, our approach doesn’t make any prior assumptions about the zero-inflatedness
of the data. Additionally, we aimed to make our model as general and data-driven
as possible, so that it can easily be applied to new datasets without extensive fine-
tuning of hyperparameters and data normalization schemes. To test our model, we
demonstrate qualitatively that it learns a rich embedding that captures the structure
of the data, as well as showing quantitatively that it is able to accurately reproduce
the original data from these embeddings. Additionally, we show that generating new
data with our structure model can help improve clustering and rare cell type identi-
fication, and that our performance on these tasks compares favorably to the similar
methods listed above.

1.3.2 Dynamics Model

The second component of this project is the dynamics model, which aims to predict
the future expression of cells based on a series of measurements from past time points.
Currently, we are not aware of any previous work that explicitly focuses on this task.
However, a number of methods exist for solving the related task of trajectory imputa-
tion, where a smooth trajectory is inferred between known start and end expression
states. Waddington-OT [28] and TrajectoryNet [32] both use unbalanced optimal
transport to generate smooth interpolations between the expression probability dis-
tributions at the start and end time points. Prescient [37] models differentiation
as a diffusion process over a learned potential function paramaterized by a neural
network. Although the authors focus on trajectory interpolation, Prescient is also
capable of making forward predictions. Finally, in order to make the computation
time tractable, all three of these methods use PCA to reduce the dimensionality of
the data before inferring trajectories. Our hypothesis is that if you can learn a low
dimensional representation of the data that more faithfully represents the true man-
ifold of cell expression, trajectories will be easier to infer over that manifold. Thus,
we decided to train our dynamics model to make predictions within the latent space
of our structure model. Specifically, given cells from a series of time points, we first
map those cells to their latent representations using the encoder from our VAE, then
we predict a latent vector for the next time point in the series, and then finally use
the decoder from our VAE to reconstruct the full predicted expression profile.

For this task of predicting future embeddings based on a sequence of past embed-
dings, we decided to use a Recurrent Neural Network (RNN). RNNs have successful
track records in many domains with sequentially structured data such as language
modeling and signal processing. Although recent advances in language modeling have
moved away from RNNs in favor of models which can better capture long-range de-
pendencies in the data, we think they are still an appropriate choice for this setting

7

given the relatively short sequence lengths in time series datasets. At a high level,
RNNs work by keeping track of an internal ’hidden’ state which contains information
about the history of the sequence so far. At each time step, this hidden state is
updated by applying a dense neural network to the current input. Another dense
layer then takes this new hidden state as input and outputs the models prediction for
the next element in the series (See 4.2 for more details). This architecture allows our
model to capture the dynamic temporal nature of the data within the latent space,
and hopefully will let it generalize to future unseen time points. It also builds in
flexibility in handling trajectories consisting of an arbitrary number of time points.
To validate the effectiveness of our structure model, we test it on a publicly available
single-cell RNA-Seq time series dataset. We show it produces accurate predictions
which outperform both our baseline and Prescient. Additionally, we show that pre-
dictions made by our model can help to discover differentially expressed genes.

2 Results

2.1 The structure model learns an accurate latent represen-
tation of scRNA-Seq data

We trained and evaluated our structure model on two large scale single-cell RNA-seq
datasets. The first, produced by Schiebinger et al. for their method Waddington-
OT, contains the differentiation trajectory of mouse embryonic fibroblasts undergoing
cellular reprogramming into induced pluripotent stem cells [28]. The dataset consists
of transcription profiles for 259,155 single cells sampled every half day for 18 days.
For this project we use only the 17 timepoints from day 0.0 to 8.0, and 4,000 cells
from each timepoint, giving a total of 68,000 cells for training (see Methods 4.5). The
second dataset, produced by Cao et al. contains 100,000 cells derived from mouse
embryos at five timepoints on days 9.5 to 13.5 of gestation [6]. For this data, we used
8,221 cells from each timepoint, giving a total of 41,105 cells for training.

We trained our structure model on both datasets, and evaluated both the quality
of the learned low-dimensional embeddings and the accuracy of the re-constructed
data. The results are shown in Figure 1. We observe that the 32 dimensional la-
tent representation of the Waddington-OT dataset learned by our model (Figure 1B)
still captures the temporal structure observed in the original data (Figure 1A). This
indicates that even within the latent space there is enough temporal dependency in
the data that our dynamics model can capture when predicting trajectories. Further-
more, we show that the reconstructed data closely matches the true data for both the
Waddington-OT dataset (Figure 1C) and the mouse embryo dataset (Figure 1E).

8

Figure 1: Results for our structure model on the Waddington-OT data-set (A-D) and the
mouse embryo dataset (E - F). (A) and (B) show the 2-dimensional UMAP embedding
of the original space and of our learned 32-dimensional latent space, respectively. Clearly,
our latent representations capture much of the structure in the original data. (C) and (E)
show UMAP plots of the true data (blue) alongside de novo data sampled from our model
(orange) for each dataset. A miLISI score, indicating how well mixed the true and simulated
data are, is also given. Finally, plots (D) and (F) are AUROC curves showing how well
a random forest classifier can separate true and generated cells. Results under this metric
for our model (VAE) are shown alongside those of existing approaches (scVAE, scDesign2,
DCA, ZINBWaVE).

9

One significant challenge for this project was establishing meaningful quantitative
metrics for evaluating our models predictions. The two we use here are miLISI and
AUROC scores of a classifier. miLISI scores are a measure of how well mixed data
with two different labels are, with 1 being perfectly separated and 2 being perfectly
mixed (See 4.4 for details). For the AUROC scores, we posited that if the data
generated by our model was accurately sampled from the underlying distribution, a
binary classifier shouldn’t be able to distinguish it from the true data. Thus, we train
a simple binary classifier to distinguish the two and plot its ROC curve to measure
performance (See 4.4). Under these two metrics, our structure model performs very
well. The miLISI scores are 1.96 and 1.97 for the Waddington-OT and mouse embryo
datasets respectively, indicating near-perfect mixing. The AUROC scores are 0.61 and
0.72 on the two datasets, meaning that our classifier is performing only somewhat
better than random guessing. Additionally, we compared the performance of our
structure model to the existing methods scVAE, scDesign2, DCA, and ZINBWaVE,
and found our model to show the best performance (Figure 1, D and F).

Table 1: Results comparing our structure model to existing single cell expression simulation
methods on the Waddington-OT dataset. We use the KS-test to compare the predicted
distributions of average cell expression, average gene expression, cell expression variance,
and gene expression variance to the true distributions.

A major limitation of the miLISI and AUROC metrics is that both are performed
on low dimensional embeddings of the data - miLISI is performed on 2D plots, and
the classifier for AUROC calculations is trained on the first 50 principle components.
Thus, we wanted an additional metric to compare true and simulated data in the
original gene expression space. Our first idea was to calculate the Pearson correlations
(PCC) and Spearman Correlations (SCC) between the true and generated data -
two metrics which are commonly used in regression tasks. However, while our model
performed very well, obtaining near perfect correlations on the Waddington-OT (PCC
= 0.999, SCC = 0.966) and mouse embryo (PCC = 0.997, SCC=.984) datasets, we
felt this was a poor measure of performance. The high degree of sparsity combined
with the large number of low-variance genes in scRNA-Seq data make correlation
coefficients an inadequate measure of interesting biological similarity. Instead, they
are more indicative of whether or not a model is simply capturing the sparsity and
technical noise of the data. Instead, we opted to follow an approach used in a review
paper by Crowell et al. [8] where the distributions of uni-variate summary statistics of
our data are compared using the non-parametric Kolmogorov–Smirnov (KS) test. We

10

use these tests to measure the similarity in the distributions of mean gene expression,
mean cell expression, gene expression variance, and cell expression variance between
our true and generated data. Our results show that we are competitive with the
existing methods scVAE, scDesign2, and ZINBWaVE and that we perform much
better than DCA (Table 1). Our performance relative to the non deep learning based
approaches scDesign2 and ZINBWaVE is particularly noteworthy, as those methods
explicitly model these four parameters when fitting a distribution to the data.

2.2 Data augmentation with the structure model improves
clustering and cell type assignment

Before presenting the results for the dynamics model, we provide an example appli-
cation demonstrating that the structure model is useful on its own merits. Although
the size of single-cell RNA-Seq libraries is growing at a staggering rate, large scale
experiments with hundreds of thousands to millions of cells are still challenging and
expensive to run. When working with smaller datasets, clustering and cell type la-
beling performance can suffer due to the lower number of cells. This is a particular
challenge for researchers who want characterize rare cell types, which may not be
clearly identifiable as a cluster without a sufficiently large dataset. Here, we show
in both a simulated and real-world setting that augmenting available data with data
sampled from our model can improve cell type labeling.

First, as a proof of concept we tested our structure model and the four existing
baseline methods on a simulated single-cell dataset produced by Splatter [38]. Splat-
ter is a tool for generating realistic artificial scRNA-Seq datasets by drawing cells from
a ZINB distribution with gene-wise mean expression sampled from a Gaussian distri-
bution. This is valuable for bench-marking computational methods because it allows
us to obtain ground-truth cell type labels by drawing different cells from different
underlying distributions. For this experiment, we used Splatter to generate a dataset
of 10,000 cells drawn from three clusters. We then test whether a random forest clas-
sifiers ability to separate one cluster from the others can be improved by augmenting
the data with additional cells sampled from our structure model. Figure 2B shows the
result of this experiment at various sampling levels, which measures the proportion
of cells coming from the target cluster. We let this range from 50% representing a
common cell type to 1% representing a very rare cell type. We find that data augmen-
tation with our structure model significantly improves the precision of cell type labels.
Additionally, we outperform all the existing single-cell modeling methods at this task,
including the surprisingly effective simple baseline of up-sampling the available data
by including the available cells multiple times.

To show that this approach also works on real data, we tested it on our mouse
embryo dataset. Since real world data no longer has ground truth cell type labels,
we instead used K-nearest neighbors clustering on the full dataset to assign labels.
The goal now is to see whether augmenting a downsampled version of the data using

11

Figure 2: The results of our experiments using our model to improve cell type labelling
in (A) the Mouse dataset and (B) simulated single-cell data from Splatter. Plots show
how the Precision of a Random Forest Classifier at separating one cluster from the others
changes as the amount of original data from the target cluster varies from 50% to 3%.
The baselines ”training” and ”upsampling” refer to using only the available data and to
randomly upsampling the available data back to the original dataset size, respectively. In
(B), we show how the performance of data augmentation with our model (VAE) compares to
existing approaches (scDesign2, DCA, ZINBWaVE). Data points are not shown for methods
when the number of cells remaining after downsampling is below the minimum threshold
allowed by their implementation.

our structure model could re-capitulate the clusters obtained when all the data was
available. As shown in Figure 2A, our structure model performs well on this task,
especially for clusters with proportionally very few cells. This indicates that our
structure model may be a valuable tool in helping to cluster and study rare cell types
in settings where large scale single-cell data-sets are unavailable.

12

2.3 The dynamics model can accurately generate cells from
unseen future timepoints

Having successfully trained our structure model and evaluated the accuracy of its
predictions, we moved on to training our dynamics model within the learned latent
space. For this we again decided to use the Waddington-OT data-set due to its
large number of timepoints and clear temporal structure. Unlike the mouse embryo
dataset, cells in the Waddington-OT dataset showed a pronounced and consistent
change in expression over time for our model to capture. For each timepoint t in the
range 2.0 to 8.0, we trained our RNN on the latent space representation of data from
times 0.0 to t− 1. We then evaluated the prediction made by our models against the
ground-truth expression data for cells at the unseen timepoint t. Figure 3 shows the
predictions made by our model for timepoint 3.0 as an example.

Figure 3: Results demonstrating the accuracy of predictions made by our dynamics model
using time point 3.0 as an example. Figure (A) shows a UMAP plot of the true data for
that timepoint in blue, set against the full trajectory in black for reference. (B) compares
this to the true data from the previous timepoint (2.5) as a baseline, while (C) compares it
to the data predicted by our model when trained on the six timepoints from 0.0 to 2.5. The
miLISI mixing score is shown for each, indicating our model (1.62) outperforms the baseline
(1.49). Finally, (D) shows the average performance across all timepoints of our dynamics
model compared to PRESCIENT, as measured by KS tests statistics between four pairs of
uni-variate distributions of the true and predicted data.

13

As a simple baseline to compare our model against, we first show that our models
predictions are more accurate than simply using data from the previous timepoint.
That is, to argue that our model is truly capturing meaningful temporal dynamics
in the data, it should perform better than a naive model which simply assumes
that nothing changes from the previous timestep. This baseline actually performs
surprisingly well, due both to the low number of genes with differing expression over
time and the significant overlap between adjacent timepoints. However, our model
still outperforms it, producing predictions that are both more well mixed with the
true data (Average Structure miLISI = 1.476, Average Baseline miLISI = 1.204)
and harder to separate with a simple binary classifier (Average Structure AUROC =
0.809, Average Baseline AUROC = 0.886).

2.4 Predicting expression from future timepoints improves
the identification of differentially expressed genes

Having shown that we can generate accurate expression profiles for cells at unseen
future timepoints along a trajectory, we next wanted to explore whether these predic-
tions can be used to gain relevant biological insights. A common task when working
with time series expression data is to find genes that are differentially expressed
across time. This can help identify the factors driving progress along trajectories and
improve our understanding of the regulatory landscape of differentiation. Here, we
perform an experiment to test whether augmenting a dataset with predictions made
by our dynamics model can improve the detection of differentially expressed genes.

For this experiment we again used the Waddington-OT dataset and considered
three different scenarios. In the first, only the data from the four timepoints 2.0 to 3.5
are available as a abseline. In the second, we take this same data but augment it with
our dynamics models predictions for timepoint 4.0. Finally, in the third case all the
true data from timepoints 2.0 to 4.0 is available. We used the scRNA-Seq trajectory
analysis software package Monocle [33] to call deferentially expressed genes in all three
cases, and then compared whether the baseline or augmented data yielded genes that
were more similar to the ground truth genes obtained using the true day 4.0 data. The
results are shown in Figure 4. We see that the area under the Precision-Recall curve,
showing how accurately differently expressed genes are discovered at various p-value
cutoffs, is much higher using the augmented data than the baseline. Additionally,
when called at an FDR of 0.01, we see that using the augmented data allows for
the accurate discovery of 32 more differentially expressed genes than the baseline at
the expense of just 16 additional false positives. Overall, this demonstrates that the
predictions made by our dynamics model can be useful for important downstream
analysis’ of single-cell RNA-Seq experiments.

14

(A)

(B)

Figure 4: Results showing that augmenting time series data with predictions made by our
structure model can improve the discovery of genes that are differentially expressed over
time. Using only timepoints 2.0 to 3.5, (A) shows precision-recall curves for calling genes
that are differentially expressed based on p-values generated by Monocle. ’Baseline’ is run
using only the available data, while ’Predictions’ uses the data augmented with future pre-
dictions for timepoint 4.0 made by our model. The ground truth is obtained by using the
true data for timepoint 4.0. ’Random’ shows the PR curve obtained by random chance
(Only ∼ 13% of genes are differentially expressed). Plot (B) is a Venn diagram showing
the overlap of genes called as differentially expressed (0.01 fdr threshold) using our baseline,
predicted trajectory, and the true trajectory.

3 Discussion

Here we have presented our structure and dynamics models as tools for analyzing
single-cell expression matrices. Our structure model implements a VAE architecture
to optimize the variational lower bound of the posterior probability of the data. This
allows for efficient sampling from the underlying probability distribution, enabling
downstream analyses such as clustering and the discovery of rare cell types. Addi-
tionally, it learns a useful latent representation of the data for our dynamics module
to operate on, which uses an RNN to predict the evolution of this probability distribu-
tion of cells over time. This permits sampling of in silico gene expression trajectories
which we show can improve the discovery of genes that are differentially expressed
during differentiation.

While we test a number of ways in which our models can be applied to generate
biological insights, for this project we focused primarily on designing, implementing,
and validating our structure and dynamics models. There is still room for much
future work in exploring ways that we can apply them to understanding the factors
regulating gene expression. An exciting possibility is using our dynamics model to

15

run in silico perturbational screens to see how the introduction or removal of key
regulators can affect cell fate. Our model would allow us to quickly and cheaply test
thousands of combinations to prioritise those that should be followed up in vitro.
This has the potential to help uncover aberrant pathways leading to developmental
diseases, as well as to aid in the engineering of reprogramming procedures for stem-
cell-derived therapies.

Another future direction for this work is to apply interpretability techniques to
understand our models predictions. This is a major challenge, as the dense networks
for the encoder/decoder of our VAE and RNN tend to permit very little in the way of
interpretation. One interesting angle might be to investigate further which dimensions
of the data each latent variable encodes. Alternatively, we could look into using a
more interpretable attention based architecture for our dynamics module. Despite
the recent successes of transformers in the natural language domain, we felt that the
task here had neither the scale of data nor the long-range temporal dependencies
to necessitate the added complexities of the architecture. However, introducing an
attention mechanism in place of our RNN in the dynamics model would allow for
easier interpretation, which could make it a direction worth exploring.

4 Methods

4.1 Structure model architecture

4.1.1 Variational Autoencoders

To learn a low dimensional representation of our expression data, we decided to
implement our structure model as a variational autoencoder. While architecturally
similar to a vanilla autoencoder, variational autoencoders optimize a very different
objective and satisfy a number of additional properties that are desirable for our task.
Formally, the goal of a variational autoencoder is to take a datasetX = {x1, x2, ..., xn}
drawn from some unknown underlying distribution P (x) and learn an approximation
for P . To do this, we first consider a vector z of latent variables that ideally capture
a lot of information in x. For example, in our setting, z might encode properties
of the cell that are relevant to its gene expression such as cell type, location in the
cell cycle, and metabolic state. If we consider some function fΦ paramaterized by Φ
which maps these latent vectors to our space of X’s, we can marginalize P (x) over
our latent variables z to get:

P (x) =

∫
z

PΦ(x|z)P (z)dz (1)

Where PΦ(x|z) is a Gaussian distribution giving the probability of obtaining the
expression profile x given our latent representation z and our parameters Φ of f .
For our VAE model, we are going to implement fΦ as a dense neural network with

16

weights and biases Φ. This is a natural choice given the successes of neural networks
at learning complex hierarchical functions and scaling to large amounts of data.

The question now is to decide how we can generate z′s that capture useful latent
information about x. Counterintuitively, for our variational autoencoder we are sim-
ply going to use z ∼ N(0, 1). This is justifiable because there will always exist some
function that maps the standard normal distribution to any arbitrary distribution
D[5]. Given sufficient capacity, this function may be approximated by our function
fΦ. Therefore, we can conceptually think of fΦ as capturing both a mapping from
N(0, 1) to a useful distribution of latent vectors and the mapping from this latent
distribution to the expression profile x.

Technically, we now have everything we need to model P (x). We could sample
a large number of z’s from N(0, 1), calculate PΦ(x|z) for each in order to calculate
P (x) based on equation (1), and then use gradient ascent to update our weights Φ
in the direction that maximizes the likelihood of the training data X. Unfortunately,
the number of samples of z needed to train this model using this approach would be
intractably large. To understand why, consider how small the space of biologically
reasonable transcriptional profiles for n genes is compared to all of Rn. PΦ(x|z) ≈ 0
for nearly all z. This means that a very large number of z’s will need to be sampled
before the model randomly stumbles across an output that looks even remotely similar
to a training example. To address this problem, we want a way to generate candidate
latent vectors z that are likely to correspond to a given input x. We do this by
introducing a new function Qθ(z|x) paramaterized by the variables θ, which models
the probability of z producing output x. For our VAE, we will model Qθ as a dense
neural network with weights θ that takes in an input x and outputs the vectors µ
and ν representing the means and variances for a multi-variate Gaussian. The reason
for this formulation will become clear shortly. Although introducing Qθ solves one
issue, we can now no longer use equation (1) to calculate P (x) as we are drawing
z’s from Qθ(z|x) rather than P (z). Instead, we will need to introduce the notion
of KL-divergence, which measures the distance between two probability distributions
based on their relative entropy.

Let’s start by writing out what it is we are now trying to optimize. First, we
want to accurately model P (x), which we will do by minimizing the negative log-
likelihood as is customary. Second, we want to learn a good function Qθ(z|x) which
is close to the true distribution P (z|x). We will achieve this ’closeness’ by minimizing
the KL-divergence DKL(Qθ(z|x)||P (z|x)). We will now use the definition of KL-
divergenceDKL(Qθ(z|x)||P (z|x)) = Ez∼Q(logQθ(z|x)−logP (z|x)) in order to rewrite
our objective into a form that is more easily computable:

17

− logP (x) +DKL(Qθ(z|x)||P (z|x)) = − logP (x) + Ez∼Q(logQθ(z|x)− logP (z|x))

= Ez∼Q(logQθ(z|x)− log
PΦ(x|z)P (z)

P (x)
− logP (x))

= Ez∼Q(logQθ(z|x)− logPΦ(x|z)− logP (z))

= Ez∼Q(− logPΦ(x|z)) +DKL(Qθ(z|x)||P (z))

Since the KL-divergence is always positive, the above provides a variational lower
bound on P (x) which we can use to maximize the posterior likelihood of the observed
data under our model. Thus, we finally have obtained an objective function for
optimizing our weights Φ and θ. Since PΦ(x|z) is a multivariate Gaussian, its negative
log is proportional to MSE(x, fΦ(z)). We can also approximate its expectation by
sampling many training examples from our dataset. Additionally, the KL-Divergence
of Qθ(z|x) and P (z) has an easily computable closed form, since both distributions
are Gaussians. At this point, it’s worth noting that even though we approached the
problem entirely from the perspective of Gaussian graphical models, something that
looks very much like an autoencoder has emerged. We have an encoder function Qθ

that maps an input gene expression profile x to the means and variances of the latent
vector z, and a decoder function fΦ mapping latent vectors z to output example
x’s. Writing things in more conventional notation for autoencoders, we have two feed
forward neural networks Φenc and Φdec which we train using the loss function:

L(x) = MSE(x,Φdec(Φenc(x))) +DKL(Φenc(x)||N(0, 1)) (2)

The last thing we need to consider is that in order to optimize our model using this
loss function, it needs to be differentiable with respect to the input x. Unfortunately,
the loss function as described above is not. We are unable to propagate the derivative
through the sampling of z from N(µ, ν) in the latent space. We work around this
by using the reparameterization trick, where instead of sampling from N(µ, ν), we
sample from N(0, 1), multiply the result by the variances ν and add the means µ.
This way, we have separated the stochasticity of the sampling from the parameters µ
and ν themselves, so the gradients can propagate back through them to the weights
of Φenc.

4.1.2 Desirable Properties of VAEs

Now that we have covered the architecture of our structure model, we will discuss
why a variational autoencoder is an appropriate choice for our task. The first reason
is that we want our model to be generative. Having trained our model on the data
from an scRNA-Seq experiment, we want to be able to sample from the underlying
distribution of the data to generate de novo transcriptional profiles. Since variational
autoencoders are formulated for the express purpose of drawing samples from P (x),

18

they are ideal for this task. We can generate as many new transcriptional profiles as
are needed by sampling z’s from the latent space. With traditional autoencoders, on
the other hand, generating new samples is difficult. You aren’t imposing any structure
on the latent space, so you have no guarantee that any point which isn’t the latent
representation of a training example won’t be decoded to absolute nonsense. This
leads into two desirable properties of the latent space of variational autoencoders
- continuity and completeness. Continuity refers to the idea that nearby points in
the latent space should be decoded to similar outputs, and completeness is the idea
that any point sampled from your latent space should decode to a plausible output.
Variational autoencoders introduce continuity into their latent space by enforcing the
constraint that the variance of z be close to one, meaning that any input during
training may be mapped to a region of latent representations which should all be
decoded into something similar to that input. Completeness is achieved by enforcing
that the mean of z be close to zero. This makes the latent representations of the
training data be clustered tightly around the origin, and thus any latent point sampled
from a standard normal should decode into a plausible looking transcriptional profile.
Together, these properties are important for the second reason that we elected to
use variational autoencoders, which is that we want to be able to safely train the
dynamics model and make predictions within the latent space. When we use our
RNN to predict the latent representation of a cell, we want to be confident that this
latent representation will decode into a biologically possible gene expression profile
for that cell. Additionally, it is desirable that improving the RNNs predictions in the
latent space should also improve the accuracy of the decoded transcriptional profiles
in the original space. Thus, we require that points which are closer together in the
latent space also have more similar decoded representations.

4.2 Dynamics model architecture

For our dynamics model, our goal is to predict the distribution of gene expression
across cells at a future time point given the distribution of expression observed at
previous time points. This task would be nearly intractable in the original high
dimensional space of gene expression, so instead we are going to make predictions
within the latent space learned by our structure model. More formally, given a series
of single-cell RNA-Seq experiments X1, ..., Xt−1 taken at time points 1...t−1 we want
to model P (Xt|X1, ..., Xt−1). Marginalizing over the latent variables z as we did in
(1), this becomes: ∫

z

PΦ(Xt|zt)P (zt|z1, ..., zt−1)dz

The decoder of our structure model has already learned a good approximation of
PΦ(Xt|zt), so all that is left is to learn a model of P (zt|z1, ..., zt−1). While we could
try and model this function by simply concatenating z1, ..., zt−1 together and passing
them into a simple dense network, this approach would scale poorly as the number

19

of time points t increased. Additionally, it would be inflexible to varying numbers
of time points, since a network trained to take inputs from say five time points
would be unable to make predictions if only four time points were available, as the
input vector would be of the wrong dimension. Instead, we decided to use an RNN
architecture, which has proven effective at working with sequential data in domains
such as language modeling and signal processing.

At a high level, the RNN architecture works by processing the inputs one-by-one
sequentially, and keeping track of a hidden state which contains a ’memory’ of what
the model has seen so far. At each time step the model will update the current hidden
state based on the current input, and then use its new hidden state to predict the
next output in the sequence. More formally, an RNN model consists of three trainable
weight matrices U , W , V and two trainable bias vectors bh, bo. At time step i, the
model will take in input zi and the hidden state hi−1 and output:

hi = tanh(Uzi +Whi−1 + bh)

ẑi+1 = V hi + bo

Where hi is the next hidden state for our model, ẑi+1 is our models prediction for the
next time step, and tanh is the Hyperbolic Tangent activation function. Note that
for the first step when i = 1, h is initialized to all zeros.

Given a sequence of latent representations of a cell z1, z2, ..., zt−1, after feed-
ing them into the RNN architecture described above we will get as output a se-
ries of predictions ẑ2, ẑ3..., ẑt. These outputs represent our model predictions of
P (z2|z1), P (z3|z1, z2), ..., P (zt|z1, ..., zt−1). During training, we can compare these pre-
dictions to the true values of zi in order to update the weights of our RNN. Since the
vectors z contain the means and variances of a Gaussian to be sampled from, the loss
function L(zi) = DKL(zi||ẑi) is a natural choice. Thus, our RNN model will learn
to capture the observed temporal dynamics of cells within the latent space, which
will hopefully generalize to generate future samples along the trajectory with similar
underlying biological representations.

Putting it all together, our dynamics model can take in a time series scRNA-
Seq dataset and make predictions about the distribution of expression at future time
points. It does this by mapping the observed data into the latent space using the
encoder of our VAE, using an RNN to predict the next latent representation based
on that sequence of observed latent representations, and then decoding the predicted
latent vector back into a gene expression profile using the decoder of the VAE. A
diagram of the full layout is shown in Figure 5.

20

Figure 5: A diagram outlining the architecture of our structure and dynamics models. Dotted
lines represent steps taking place at the next timepoint t + 1, and orange arrows point out
the terms of our various loss functions during training.

4.3 Weighting of loss terms

In the loss function for our VAE shown in equation (2), there is one important com-
ponent that we left out. In practice, it is often necessary introduce a weighting to
the two terms in this loss function lest one term completely dominate another. For
example, suppose that in our loss function the values of the MSE term were orders of
magnitude larger than values of the KL-divergence term. This would mean our model
would be incentivized to focus purely on obtaining an optimal reconstruction of the
input at the expense of the latent space structure that motivated our use of VAEs
in the first place. On the other hand, if the KL-divergence loss term dominates, the
model will learn a latent representation that is perfectly standard normal for every
input at the expense of being able to produce accurate outputs. Clearly, we need a
way to identify a good middle ground.

In the field of deep learning generally, when working with objective functions that
have multiple terms the most commonly used approaches for weighting them are to
set weights such that each term has the same magnitude or to run a grid search
to find the weighting that works best. However, neither of these approaches are
very principled. The first ignores the fact that losses may be highly non-linear and
have different minimum values, while the second is very computationally expensive.
Additionally, the optimal weightings may be very setting specific, and we want users
to be able to apply our method to new datasets without extensive fine tuning. Thus,
we wanted a way to automatically set the loss weightings during training. For this, we
elected to use a coefficient of variations (CoV) based dynamic loss weighting scheme
proposed by Groenendijk et al [11]. This approach works under the assumption that

21

a loss term has been fully optimized once its variance approaches zero. Therefore,
we should weight loss terms based on their coefficients of variation such that during
training those terms which still show high variance compared to their mean are given
higher importance. Formally, for each term i in our loss function, the weighting αit

on batch t should be given by:

αit =
1∑
k

σkt

µkt

∗ σit

µit

where µit and σit are running averages over the last 100 batches of the mean and
standard deviation of term i.

(A) (B) (C)

Figure 6: Three plots showing the mean variance EXzx,σ for each of the 32 latent variables
in our variational autoencoder when trained (A) with weighting for the KL-divergence that is
too high, (B) with a weighting for the MSE that is too high, and (C) with the CoV dynamic
loss weighting method.

To validate the success of using this approach, we performed an analysis method
borrowed from Asperti et al to gain insight into the latent variables learned by our
autoencoder [2]. Plotting the average variance for each of the 32 latent dimensions
across each training epoch, we can see the trade off our model is making between
satisfying the KL-divergence loss term (variances near one) and the reconstruction
loss term (variances near 0). In Figure 6, we see these plots for three training runs -
one where the KL-divergence term is weighted too high, one where the MSE term is
weighted too high, and one using the dynamic CoV weighting. The third plot looks
very similar to that of a successfully trained image autoencoder in Asperti et al, with
latent variables slowly being taken from variance 1 and being put to work, but not
collapsing all the way down to variance zero.

4.4 Evaluation Metrics

To understand the quality of predictions made by our model, we employed a number
of different evaluation metrics in this paper. Here we will go into more detail about
how each was calculated:

22

• miLISI The mean integration Local Inverse Simpson Index is a measure of
how well mixed two datasets are. For each point in the two datasets, each of
its 30 nearest neighbors are identified and weighted based on a Gaussian kernel.
Then, the expected number of these neighbors that would need to be sampled
before obtaining a second point from the same dataset is calculated, with the
probabilities of choosing a neighbor weighted by its proximity. The average
of this expectation is then taken across all points. If this average is 1, that
indicates that the neighbors for each point all have the same label, and thus
the two datasets are perfectly seperated. On the other hand, if it is two, that
means each point has as many neighbors with the same label as with different
labels, and the two datasets are perfectly mixed.

• AUROC As a way to test if simulated data accurately matches true data, we
reasoned that a binary classifier should not be able to tell the two apart. To
use this as an evaluation metric for predictions made by our models, we first
reduced the dimensionality of both the predicted and true data by taking the
first 50 principal components. Then we trained a random forest classifier with
100 trees of max depth 2 to separate the true and predicted data, and calculated
its area under the receiver operator characteristic curve (AUROC) to measure
its performance. If our generated data is accurate, the model should not be able
to tell the two apart better than random guessing, and would have an AUROC
of 0.5. Note that this metric is very strict - if there is even a single consistent
difference between true and generated data, no matter how small, the classifier
will be able to perfectly seperate the two classes and have an AUROC of 1.

• KS-test The Kolmogorov–Smirnov (KS) test is a non-parametric test of equal-
ity between two distributions. The test statistic measures the maximum vertical
distance between two cumulative distribution functions (CDF), with 0 indicat-
ing that the two distributions are identical and 1 indicating that they have no
overlap. To use this to evaluate predictions made by our models, we calculate
the empirical CDF for four uni-variate summary statistics of our data (average
expression across cells, average expression across genes, variance across cells,
variance across genes) and then use the KS test to compare these to the distri-
butions in the true data.

4.5 Data Preprocessing

For this project we focused our analysis on two single-cell RNA-Seq time series
datasets, the Waddington-OT data [28] and the mouse embryo data [6]. Although
the full Waddington-OT dataset contains data from across 18 days, at day 8.5 they
treat the sample with a collection for transcription factors. To avoid this major per-
turbation from affecting our results, we only use data from the seventeen timepoints
at days 0.0 to 8.0. For both datasets, we wanted to have an equal number of cells

23

per timepoint to avoid bias during training, so we down-sampled the data for each
timepoint to have the same number of cells as the timepoint with the fewest cells.
This gave 4,000 cells per timepoint for the Waddington-OT data and 8,221 cells per
timepoint for the mouse embryo data.

To preprocess the two datasets we analyzed here, we started by taking the raw
TPKM expression matrices and filtering cells with abnormally low/high gene expres-
sion. In our experiments, we also found that our model performs best when the raw
TPKM expression matrix is normalized by unique UMIs per cell to account for the
stochastic variation in sequencing depth between cells. Additionally, we found that
our model performs slightly better in the original space of read-counts than in the
log space. After filtering and normalizing the raw read matrices for the two exper-
iments, we then used Scanpy’s python implementation of Seurat to select the 2,000
most variable genes in the dataset. This is necessary since the vast majority of genes
either show zero expression across all cells or are expressed at a nearly constant level
in all cells. On the other hand, differentiation is driven by a small number of im-
portant regulatory genes. Thus, including only the most variable genes in the input
significantly decreases the number of parameters of our model while still capturing
those of biological interest.

4.6 Training Scheme

When training our VAE, we divided our data into a 70/15/15 train/validation/test
split. We observed marginal evidence of our VAE model overfitting to the data,
with validation loss starting to slowly increase while train loss continued to decrease.
Thus, based on the training and validation loss curves shown in Figure 7, we decided
to stop training after 75 epochs. To avoid the trained structure model leaking any
information to the dynamics model about cells at a future unseen time point, we made
sure that the structure model was only ever trained on data that would also be visible
to the dynamics model during training. Specifically, this meant training a separate
structure model to pair with each dynamics model, so for example the structure model
would only be trained on day 0.0 - 3.0 data when predicting expression for day 3.5,
but would be trained on all day 0.0 - 7.5 data when predicting expression for day 8.0.

After training our VAE, we then use it to map all of our training data into the
latent space within which our dynamics model operates. Here, we face the challenge
that our RNN requires as input a sequence of measurements across time points, but
we have only a single measurement at a single time point for each cell. Although
cells are all sampled from the same population, the scRNA-Seq assay is inherently
destructive, meaning we can’t get measurements from the same cell at multiple differ-
ent time points. To overcome this, we use an Optimal-Transport approach to match
the distributions of cells between time points. The idea is that as a population of
cells moves along a differentiation trajectory, the distribution of expression within the
population gradually shifts. If we find an optimal mapping between the distributions

24

at two time points based on some distance metric (in this case KL-divergence), we
can match each individual cell in the first time point with its most likely descendent
in the second time point, giving us an approximation of how expression of that cell
would have progressed if it hadn’t been destroyed during sequencing. More formally,
we consider the space of matrices M denoting pairings of cells between time points t
and t + 1 with Mk

i,j = 1 if the ith cell at time point t is matched to the jth cell at
time point t+ 1 and Mk

i,j = 0 otherwise. We then solve the optimization problem:

min
Mk∈M

∑
i

∑
j

DKL(xt,i||xt+1,j)M
k
i,j

where xt,i denotes the expression profile of cell i from time point t. The obtained
pairings are used as our input sequence for the dynamics model. We also experimented
with matching cells probabalistically, where matchings for each epoch were sampled
with probability inversely proportional to their cost rather than always using the
single lowest cost matching. However, we observed no significant improvement to
the models performance under this approach. Thus, we decided it wasn’t worth the
increased compute needed to re-calculate matchings at each epoch.

Figure 7: Plots showing Train and Validation loss per epoch while training our Structure
(left) and Dynamics (right) models.

When training our RNN with data from time points 0 to t available, we use all
data from time points 0 to t − 2 as training data, data from time point t − 1 as a
validation set, and data from time point t as a test set. Similar to our VAE model,
we observed little evidence of over-fitting during training. Based on our loss curves
shown in Figure 7, we decided to train for 300 epochs, beyond which our validation loss
stopped decreasing. For both our VAE and RNN models we used a batch size of 256,
which was the largest batch that could fit into memory on our GPU. Additionally,
we performed weight updates during training using the commonly used first-order
stochastic optimization algorithm Adam [20].

25

4.7 Hyperparameter optimization

To explore the effect of various hyperparameters in our model, we ran a grid search
over all combinations of the hyperparameters shown in table 2. To accommodate for
differences in sample efficiency under different hyperparameter combinations, models
were trained for 1000 epochs (far more than would ever be necessary) and evaluated
after each epoch. The evaluation at the best performing epoch was then saved. Since
the task doesn’t permit a nice clean metric like validation accuracy which we can
easily optimize for, we instead had to evaluate each run with a number of the metrics
described above - Pearson correlation, Spearman correlation, RF-classifier AUROC,
miLISI, and the KS-test. Thankfully, all of these metrics corresponded well to each
other - we never observed a run with, for example, a very high miLISI but a low
Pearson Correlation.

Hyperparameter Values

VAE Learning Rate 0.01, 0.001, 0.0001
RNN Learning Rate 0.01, 0.001, 0.0001
Initialization Type Glorot, Zeros
Layer Size Determination Log, Linear
Number of Layers 2, 3, 4
Latent Size 16, 32, 64, 128, 256

Table 2: Values for each hyperparameter that were explored with a grid search. Every pos-
sible combination was tested yielding a total of 540 different training runs. Initialization
type describes how the initial values of trainable parameters are set (either sampled from a
Gaussian or set to zero), and layer size determination refers to how the size of the interme-
diate hidden layers decrease from the input size to the latent size (either logarithmically or
linearly). Based on the results, the final selected hyperparameters were VAE Learning Rate
of 0.0001, RNN Learning Rate of 0.0001, Initialization type of Glorot, Layer Size Determi-
nation of Linear, Number of layers of 4, and Latent size of 32.

Another challenge we had to navigate was the trade-off between performance
of the structure model and performance of the dynamics model. For example, the
structure model performs better with larger latent sizes. This is expected, as in the
extreme if the latent size was 2000 our auto-encoder wouldn’t need to learn a lower
dimensional representation at all, and could reconstruct the input perfectly. However,
our dynamics model performs better with lower dimensional latent sizes. Remember
the hypothesis that trajectories are more easily modeled on low dimensional manifolds
is the whole motivation for our architecture in the first place - otherwise we could
have just fed the expression profiles straight into an RNN directly. To deal with
this trade off, we selected intermediate values for those hyperparameters that worked
reasonably well for both models.

26

5 References

References

[1] J. Acosta, D. Ssozi, and P. van Galen. “Single-Cell RNA Sequencing to Disen-
tangle the Blood System”. In: Arterioscler Thromb Vasc Biol 41.3 (Mar. 2021),
pp. 1012–1018.

[2] Andrea Asperti and Matteo Trentin. Balancing reconstruction error and Kullback-
Leibler divergence in Variational Autoencoders. 2020. doi: 10.48550/ARXIV.
2002.07514. url: https://arxiv.org/abs/2002.07514.

[3] Etienne Becht et al. “Dimensionality reduction for visualizing single-cell data
using UMAP”. In: Nature Biotechnology 37.1 (Jan. 2019), pp. 38–44. issn: 1546-
1696. doi: 10.1038/nbt.4314. url: https://doi.org/10.1038/nbt.4314.

[4] Samuel R. Bowman et al. “Generating Sentences from a Continuous Space”. In:
CoRR abs/1511.06349 (2015). arXiv: 1511.06349. url: http://arxiv.org/
abs/1511.06349.

[5] G. E. P. Box and D. R. Cox. “An Analysis of Transformations”. In: Journal of
the Royal Statistical Society. Series B (Methodological) 26.2 (1964), pp. 211–
252. issn: 00359246. url: http://www.jstor.org/stable/2984418.

[6] Junyue Cao et al. “The single-cell transcriptional landscape of mammalian
organogenesis”. In: Nature 566.7745 (Feb. 2019), pp. 496–502. issn: 1476-4687.
doi: 10.1038/s41586-019-0969-x. url: https://doi.org/10.1038/s41586-
019-0969-x.

[7] Tara Chari, Joeyta Banerjee, and Lior Pachter. “The Specious Art of Single-
Cell Genomics”. In: bioRxiv (2021). doi: 10.1101/2021.08.25.457696. eprint:
https://www.biorxiv.org/content/early/2021/08/26/2021.08.25.457696.
full.pdf. url: https://www.biorxiv.org/content/early/2021/08/26/
2021.08.25.457696.

[8] Helena L. Crowell et al. “Built on sand: the shaky foundations of simulating
single-cell RNA sequencing data”. In: bioRxiv (2022). doi: 10.1101/2021.11.
15.468676. eprint: https://www.biorxiv.org/content/early/2022/02/23/
2021.11.15.468676.full.pdf. url: https://www.biorxiv.org/content/
early/2022/02/23/2021.11.15.468676.

[9] Gökcen Eraslan et al. “Single-cell RNA-seq denoising using a deep count autoen-
coder”. In: Nature Communications 10.1 (Jan. 2019), p. 390. issn: 2041-1723.
doi: 10.1038/s41467-018-07931-2. url: https://doi.org/10.1038/s41467-
018-07931-2.

27

[10] Jeffrey A. Farrell et al. “Single-cell reconstruction of developmental trajectories
during zebrafish embryogenesis”. In: Science 360.6392 (2018), eaar3131. doi:
10.1126/science.aar3131. eprint: https://www.science.org/doi/pdf/10.
1126/science.aar3131. url: https://www.science.org/doi/abs/10.1126/
science.aar3131.

[11] Rick Groenendijk et al. Multi-Loss Weighting with Coefficient of Variations.
2020. doi: 10.48550/ARXIV.2009.01717. url: https://arxiv.org/abs/2009.
01717.

[12] Christopher Heje Grønbech et al. “scVAE: variational auto-encoders for single-
cell gene expression data”. In: Bioinformatics 36.16 (May 2020), pp. 4415–
4422. issn: 1367-4803. doi: 10.1093/bioinformatics/btaa293. eprint: https:
//academic.oup.com/bioinformatics/article-pdf/36/16/4415/33965265/
btaa293.pdf. url: https://doi.org/10.1093/bioinformatics/btaa293.

[13] Suleyman Gulsuner et al. “Spatial and Temporal Mapping of De Novo Muta-
tions in Schizophrenia to a Fetal Prefrontal Cortical Network”. In: Cell 154.3
(2013), pp. 518–529. issn: 0092-8674. doi: https://doi.org/10.1016/j.cell.
2013.06.049. url: https://www.sciencedirect.com/science/article/pii/
S0092867413008313.

[14] S. C. Hicks et al. “Missing data and technical variability in single-cell RNA-
sequencing experiments”. In: Biostatistics 19.4 (Oct. 2018), pp. 562–578.

[15] B. Huang et al. “Decoding the mechanisms underlying cell-fate decision-making
during stem cell differentiation by random circuit perturbation”. In: J R Soc
Interface 17.169 (Aug. 2020), p. 20200500.

[16] Ruochen Jiang et al. “Statistics or biology: the zero-inflation controversy about
scRNA-seq data”. In: Genome Biology 23.1 (Jan. 2022), p. 31. issn: 1474-760X.
doi: 10.1186/s13059-022-02601-5. url: https://doi.org/10.1186/s13059-
022-02601-5.

[17] Peter V. Kharchenko. “The triumphs and limitations of computational methods
for scRNA-seq”. In: Nature Methods 18.7 (July 2021), pp. 723–732. issn: 1548-
7105. doi: 10.1038/s41592-021-01171-x. url: https://doi.org/10.1038/
s41592-021-01171-x.

[18] Tae Hyun Kim, Xiang Zhou, and Mengjie Chen. “Demystifying “drop-outs”
in single-cell UMI data”. In: Genome Biology 21.1 (Aug. 2020), p. 196. issn:
1474-760X. doi: 10.1186/s13059-020-02096-y. url: https://doi.org/10.
1186/s13059-020-02096-y.

[19] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2013.
doi: 10.48550/ARXIV.1312.6114. url: https://arxiv.org/abs/1312.6114.

28

[20] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. 2014. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.org/abs/
1412.6980.

[21] Ashley Laughney et al. “Regenerative lineages and immune-mediated pruning
in lung cancer metastasis”. In: Nature Medicine 26 (Feb. 2020). doi: 10.1038/
s41591-019-0750-6.

[22] Xiaodong Liu et al. “Modelling human blastocysts by reprogramming fibroblasts
into iBlastoids”. In: Nature 591.7851 (Mar. 2021), pp. 627–632. issn: 1476-4687.
doi: 10.1038/s41586-021-03372-y. url: https://doi.org/10.1038/s41586-
021-03372-y.

[23] A. Nguyen et al. “Single Cell RNA Sequencing of Rare Immune Cell Popula-
tions”. In: Front Immunol 9 (2018), p. 1553.

[24] Anoop P. Patel et al. “Single-cell RNA-seq highlights intratumoral heterogene-
ity in primary glioblastoma”. In: Science 344.6190 (2014), pp. 1396–1401. doi:
10.1126/science.1254257. eprint: https://www.science.org/doi/pdf/10.
1126/science.1254257. url: https://www.science.org/doi/abs/10.1126/
science.1254257.

[25] Chengxiang Qiu et al. “Systematic reconstruction of cellular trajectories across
mouse embryogenesis”. In: Nature Genetics 54.3 (Mar. 2022), pp. 328–341. issn:
1546-1718. doi: 10.1038/s41588-022-01018-x. url: https://doi.org/10.
1038/s41588-022-01018-x.

[26] A. Raj et al. “Stochastic mRNA synthesis in mammalian cells”. In: PLoS Biol
4.10 (Oct. 2006), e309.

[27] Davide Risso et al. “A general and flexible method for signal extraction from
single-cell RNA-seq data”. In: Nature Communications 9.1 (Jan. 2018), p. 284.
issn: 2041-1723. doi: 10.1038/s41467-017-02554-5. url: https://doi.org/
10.1038/s41467-017-02554-5.

[28] Geoffrey Schiebinger et al. “Optimal-Transport Analysis of Single-Cell Gene
Expression Identifies Developmental Trajectories in Reprogramming”. In: Cell
176.4 (2019), 928–943.e22. issn: 0092-8674. doi: https://doi.org/10.1016/
j.cell.2019.01.006. url: https://www.sciencedirect.com/science/
article/pii/S009286741930039X.

[29] R. A. Simmons. “Developmental origins of adult disease”. In: Pediatr Clin North
Am 56.3 (June 2009), pp. 449–466.

[30] Tianyi Sun et al. “scDesign2: a transparent simulator that generates high-
fidelity single-cell gene expression count data with gene correlations captured”.
In: Genome Biology 22.1 (May 2021), p. 163. issn: 1474-760X. doi: 10.1186/
s13059-021-02367-2. url: https://doi.org/10.1186/s13059-021-02367-2.

29

[31] Valentine Svensson. “Droplet scRNA-seq is not zero-inflated”. In: Nature Biotech-
nology 38.2 (Feb. 2020), pp. 147–150. issn: 1546-1696. doi: 10.1038/s41587-
019-0379-5. url: https://doi.org/10.1038/s41587-019-0379-5.

[32] Alexander Tong et al. TrajectoryNet: A Dynamic Optimal Transport Network
for Modeling Cellular Dynamics. 2020. doi: 10.48550/ARXIV.2002.04461. url:
https://arxiv.org/abs/2002.04461.

[33] Cole Trapnell et al. “The dynamics and regulators of cell fate decisions are
revealed by pseudotemporal ordering of single cells”. In: Nature Biotechnology
32.4 (Apr. 2014), pp. 381–386. issn: 1546-1696. doi: 10.1038/nbt.2859. url:
https://doi.org/10.1038/nbt.2859.

[34] Po-Yuan Tung et al. “Batch effects and the effective design of single-cell gene
expression studies”. In: Scientific Reports 7.1 (Jan. 2017), p. 39921. issn: 2045-
2322. doi: 10.1038/srep39921. url: https://doi.org/10.1038/srep39921.

[35] Peter van Galen et al. “Single-Cell RNA-Seq Reveals AML Hierarchies Rel-
evant to Disease Progression and Immunity”. In: Cell 176.6 (2019), 1265–
1281.e24. issn: 0092-8674. doi: https://doi.org/10.1016/j.cell.2019.
01.031. url: https://www.sciencedirect.com/science/article/pii/
S0092867419300947.

[36] Michel Verleysen and Damien François. “The Curse of Dimensionality in Data
Mining and Time Series Prediction”. In: Computational Intelligence and Bioin-
spired Systems. Ed. by Joan Cabestany, Alberto Prieto, and Francisco Sandoval.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 758–770. isbn: 978-3-
540-32106-4.

[37] Grace Hui Ting Yeo, Sachit D. Saksena, and David K. Gifford. “Generative
modeling of single-cell time series with PRESCIENT enables prediction of cell
trajectories with interventions”. In: Nature Communications 12.1 (May 2021),
p. 3222. issn: 2041-1723. doi: 10.1038/s41467-021-23518-w. url: https:
//doi.org/10.1038/s41467-021-23518-w.

[38] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Splatter: simulation of
single-cell RNA sequencing data”. In: Genome Biology 18.1 (Sept. 2017), p. 174.
issn: 1474-760X. doi: 10.1186/s13059-017-1305-0. url: https://doi.org/
10.1186/s13059-017-1305-0.

30

6 Supplementary Figures

Figure 8: The full results of our Dynamics module on the Waddington-OT dataset, as
measured by our KS-test metric. The average across these timepoints is shown in Figure
3D.

Figure 9: Scatter-plots showing the expression in each cell for six differentially expressed
genes in (A) the data predicted by our dynamics model and (B) the true data. We can see
that while our model captures the patterns of expression well across time, it does not have
the same sparsity as the true data. Differential expression calling and plots produced by
Monocle [33].

31

