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Abstract

Genome-wide association studies (GWAS) are powerful tools for identifying as-
sociations between genetic variants and complex human diseases. However,
attempts to pinpoint the exact genetic variants that contribute to disease phe-
notypes are often obstructed by blocks of high linkage disequilibrium (LD)
spread throughout the genome. Consequently, effective fine-mapping meth-
ods are needed to successfully localize the sections of the genome containing
disease-causing variants. To achieve this goal, we develop a novel method called
multilocus informativeness that leverages both LD and association data to ef-
fectively fine-map disease-causing variants. We show that multilocus informa-
tiveness is a robust fine-mapping method that can successfully locate causative
variants for several different disease phenotypes in the same population. Addi-
tionally, we demonstrate that multilocus informativeness can effectively localize
disease association signals in a variety of simulated study populations, and we
show that multilocus informativeness compares favorably to multiple existing
mapping methods.
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1 Introduction

Genome-wide association studies (GWAS) have become popular approaches for
identifying the genetic determinants of complex human diseases. While GWAS
methodologies can be used to uncover associations between disease phenotypes
and any types of genetic variants, they are most commonly applied to single-
nucleotide polymorphisms, or SNPs. One of the central challenges that con-
founds GWAS attempts to pinpoint disease-causing SNPs is linkage disequi-
librium (LD), or the correlation between genotypes at different loci across the
genome. Specifically, the human genome contains many LD blocks, or regions
characterized by high LD between SNPs located within the region and low LD
between SNPs located inside and outside the region1. Consequently, because
the genotypes of SNPs within LD blocks are highly correlated, it can be diffi-
cult to determine exactly which SNP in an LD block contributes to the disease
phenotype when a statistical association is detected.

Fine-mapping methods seek to resolve this problem by further localizing the
association signal obtained from a GWAS, ideally pinpointing a specific variant
suspected to cause disease. One approach to fine-mapping genetic variants is to
apply the same single-SNP association tests often used to identify genome-wide
associations on this smaller candidate region of the genome2,3. However, the
applications of these statistical tests typically assume that the genotypes at all
of the examined loci are independent, an assumption which does not hold in
smaller candidate regions with high LD. Additionally, because these tests only
consider the genetic variation at one SNP at a time, they lose statistical power
that could be gained from simultaneously considering the data at other nearby
loci.

As a result of these disadvantages, a variety of other fine-mapping methods
have been developed, including methods built on LD-based heuristics, penal-
ized regression, Bayesian statistics, and genome annotation4. However, each of
these methods also has important limitations. Specifically, previously developed
LD-based fine-mapping heuristics typically rely on arbitrary LD thresholds to
identify potentially causative SNPs, and these approaches do not leverage as-
sociation data from multiple SNPs to improve statistical power. Additionally,
while other fine-mapping approaches often do simultaneously consider data from
multiple loci, they do not explicitly model the significant amount of local ge-
nomic structure present in LD blocks. Consequently, we sought to develop a
fine-mapping method that both explicitly models the genomic structure of LD
blocks and simultaneously incorporates association data from several nearby
SNPs to improve statistical power.

4



2 Mapping Disease-Causing Variants in GWAS

2.1 Existing Methods

While many methods for mapping disease-causing variants in GWAS exist, we
focus here on the single-SNP methods that are commonly used to identify
genotype-phenotype associations in genome-wide analyses. The computation
of these test statistics is based on a contingency table of observations specifying
the number of individuals in the study population with each possible genotype-
phenotype combination (Table 1).

Genotype AA Aa aa Total
Controls r0 r1 r2 r
Cases s0 s1 s2 s
Total n0 n1 n2 n

Table 1: A contingency table for the A/a locus.

2.1.1 Chi-Squared Test

The chi-squared test measures the likelihood that an observed deviation from the
expected contingency table occurred due to chance. Under the null hypothesis of
no association between the genotype and phenotype, the expected contingency
table can be easily computed from a contingency table of observations (Table
2).

Genotype AA Aa aa
Controls n0r/n n1r/n n2r/n
Cases n0s/n n1s/n n2s/n

Table 2: The expected contingency table for the observations shown in Table 1.

The observed and expected contingency tables can then be used to compute
the chi-squared test statistic, which is χ2-distributed with 2 degrees of freedom:

χ2
2 =

2∑
i=0

(ri − nir/n)2

nir/n
+

(si − nis/n)2

nis/n
(1)

2.1.2 Cochran-Armitage Trend Test

The Cochran-Armitage trend test modifies the chi-squared test to investigate a
suspected trend in the genotypes’ effects5,6. The suspected trend is specified by
a weights vector x = (x0, x1, x2) where xi is the weight for the genotype with
i copies of the a allele. When compared to the chi-squared test, the Cochran-
Armitage trend test has more statistical power to detect deviations from the
expected contingency table that follow the suspected trend but less statistical
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power to detect deviations from the expected contingency table that follow other
trends.

Several commonly examined trends for how the a allele at the A/a locus may
affect disease risk are shown in Table 3. Notably, the Cochran-Armitage trend
test can detect both increases and decreases in disease risk associated with the
a allele, indicating that the trends shown in Table 3 can be used even if it is
unclear which allele may contribute to the disease phenotype. However, it is
also important to note that for some weights vectors, the suspected trend for the
a allele may be different than the suspected trend for the A allele. Specifically,
while an additive trend for the a allele also investigates an additive trend for the
A allele, a dominant (or recessive) trend for the a allele examines a recessive (or
dominant) trend for the A allele. As a result, it may sometimes be necessary to
test for multiple suspected trends if either allele could contribute to the disease
phenotype.

Suspected Trend x0 x1 x2

Additive 0 1 2
Dominant 0 1 1
Recessive 0 0 1

Table 3: Common suspected trends for how the a allele at the A/a locus may affect
disease risk.

The Cochran-Armitage trend test statistic is χ2-distributed with 1 degree
of freedom and can be computed from a contingency table of observations as
follows:

T 2 =

∑2
i=0 [xi(sri − rsi)]2

rs
n [

∑2
i=0 x

2
ini(n− ni)− 2

∑1
i=0

∑2
j=i+1 xixjninj ]

(2)

2.2 Multilocus Informativeness

In this section, we develop a new measure called multilocus informativeness that
adapts the directed informativeness measure of LD to the GWAS setting.

2.2.1 Directed Informativeness

Directed informativeness is a graph-theoretic LD measure that can be conser-
vatively extended to multiple loci7,8. Consider a population of n haplotypes
genotyped at m biallelic SNPs. At each SNP, let 0 denote the major, or more
frequent, allele and 1 denote the minor, or less frequent, allele. Additionally, let
Ai,j denote the allele of haplotype i at SNP j.

We define the distinguishability graph, or D graph, for a SNP t to be a
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directed graph denoted Dt with vertex set V and edge set Et defined as follows:

V = {1, 2, ..., n}
Et = {(i, j) : Ai,t = 0, Aj,t = 1}

Notably, each vertex in Dt represents a haplotype in the population, and two
haplotypes are connected by an edge if they have different alleles at SNP t.
Edges in Dt are oriented from the haplotype containing the major allele at SNP
t to the haplotype containing the minor allele at SNP t.

Next, we define the directed informativeness of a SNP t with respect to a
SNP u to be:

DI(t, u) =

∑
(i,j)∈Eu

δi,j(t)

|Eu|
(3)

where:

δi,j(t) =


1 if (i, j) ∈ Et

−1 if (j, i) ∈ Et

0 otherwise

Directed informativeness ranges from −1 to 1 with values further from 0 sig-
naling stronger LD. The measure is computed by counting the fraction of the
edges in the D graph for SNP u that are also in the D graph for SNP t, with
edges oriented in opposite directions in the two graphs contributing −1 instead
of 1 to the numerator. Consequently, positive directed informativeness values
indicate an association between the major alleles at both loci, whereas negative
directed informativeness values indicate an association between the major allele
at one locus and the minor allele at the other locus.

2.2.2 Adaptation to GWAS

Now, consider a population of n diploid individuals genotyped at m biallelic
SNPs. Let Gi,j be the number of copies of the minor allele that individual i
has at SNP j, and let Pi be the phenotype of individual i where Pi = 0 for
individuals in the control group and Pi = 1 for individuals in the case group.

We define the GWAS distinguishability graph for a SNP t to be a directed
graph denoted GDt with vertex set V and edge set E′t defined as follows:

V = {1, 2, ..., n}
E′t = {(i, j) : Gi,t < Gj,t, Pi 6= Pj}

Notably, each vertex in GDt represents a diploid individual in the population,
and two individuals are connected by an edge if they have different phenotypes
and different genotypes at SNP t. This construction reflects the fact that we are
primarily interested in distinguishing case individuals from control individuals
in GWAS, so we only draw edges between individuals with different phenotypes.
Additionally, edges in GDt are oriented from the individual with fewer copies of
the minor allele at SNP t to the individual with more copies of the minor allele
at SNP t.
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Next, we define the single-locus informativeness of a SNP t with respect to
the phenotype to be:

I1(t) =

∑
(i,j)∈E′

t
δ′(i, j)

|E′t|
(4)

where:

δ′(i, j) =

{
1 if Pi = 0 and Pj = 1

−1 if Pi = 1 and Pj = 0

Single-locus informativeness ranges from −1 to 1 with values further from 0
signaling a more significant association between the SNP t and the phenotype.
The measure is computed by counting the fraction of the edges in the D graph
for SNP t that point in the same phenotypic direction, with edges oriented from
controls to cases contributing 1 to the numerator and edges oriented from cases
to controls contributing −1 to the numerator. Consequently, positive single-
locus informativeness values associate the minor allele with the case phenotype,
and negative single-locus informativeness values associate the major allele with
the case phenotype.

Furthermore, we define the GWAS directed informativeness of a SNP t with
respect to a SNP u equivalently to how directed informativeness was previously
defined for LD, with the exception that the definition of the D graph has now
changed:

GDI(t, u) =

∑
(i,j)∈E′

u
δi,j(t)

|E′u|
(5)

GWAS directed informativeness has the same general properties as directed
informativeness for LD, as edges in the D graph are still oriented from the
vertex with fewer copies of the minor allele to the vertex with more copies of
the minor allele.

Finally, we define the multilocus informativeness of a SNP t with respect to
the phenotype to be:

Iw(t) =

∑
u∈Wt

GDI(t, u)I1(u)

w
(6)

where w is an odd-numbered window size specifying how many SNPs are con-
tained within the set Wt, and Wt is the set containing the SNP t as well as the
first (w − 1)/2 SNPs to the left and right of SNP t. Therefore, the multilocus
informativeness for a SNP t is computed as a weighted average of the single-
locus informativeness values of all SNPs u within (w − 1)/2 of SNP t, where
each SNP u is weighted according to the strength of the LD between SNPs t
and u. This formulation seeks to use the fact that SNPs in high LD with a
disease-causing SNP will also exhibit associations with the disease phenotype
to more effectively identify the disease-causing variant from a GWAS.

More specifically, the expectation that disease-causing SNPs will often exist
within regions of high LD in GWAS study populations is supported by the
typical sampling methodology of GWAS. In particular, because GWAS typically
include a larger fraction of case individuals than the general population, we
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expect that disease-causing SNPs, along with tracts of local SNPs in high LD
with those SNPs, will often appear more frequently in GWAS study populations
than the general population. This observation indicates that levels of genomic
structure may frequently be elevated around disease-causing SNPs in GWAS,
suggesting that regions with higher LD may be more likely to contain causative
SNPs. As a result, multilocus informativeness may be able to more effectively
localize disease-causing SNPs in GWAS by integrating this expectation of local
genomic structure with the association data at several nearby SNPs.

Moreover, while multilocus informativeness incorporates information from
several nearby SNPs, it also possesses many of the same general properties that
characterize single-locus informativeness. Namely, multilocus informativeness
ranges from −1 to 1 with values further from 0 signaling a more significant
association between the SNP t and the phenotype. Additionally, positive multi-
locus informativeness values associate the minor allele with the case phenotype,
and negative multilocus informativeness values associate the major allele with
the case phenotype. Figure 1 demonstrates how the association and LD data at
SNPs surrounding a disease locus contribute to the computation of multilocus
informativeness to produce these trends.

(a) (b)

Figure 1: Computation of multilocus informativeness for disease-causing SNPs in
strong LD with nearby SNPs. Haplotypes characteristic of case individuals are shown,
with the boxed SNP t as the disease-causing SNP. The signs of single-locus informa-
tiveness and GWAS directed informativeness are depicted for each nearby SNP u as
they would be computed in a case/control cohort with strong LD. (a) Association of
a minor allele with the disease phenotype produces a positive value of multilocus in-
formativeness. (b) Association of a major allele with the disease phenotype produces
a negative value of multilocus informativeness.

Finally, we would like to highlight the importance of choosing an appropriate
window size w when computing multilocus informativeness. The window size w
should be chosen so that each set Wt is expected to contain all of the SNPs in
high LD with the candidate SNP t and few SNPs that are not in high LD with
the candidate SNP t. If the window size w is chosen to be too small, multilocus
informativeness will not adequately incorporate local genomic structure and as-
sociation data from nearby SNPs into the calculation, which will diminish the
potential benefits of using this measure over other single-SNP statistical tests.
Additionally, if the window size w is chosen to be too large, the multilocus

9



informativeness calculation may become less accurate due to the noisy contri-
butions of the additional low LD SNPs. However, because low LD SNPs do not
contribute as much to the calculation of multilocus informativeness, having a
window size that is slightly too large will likely not significantly affect results.

3 Simulating GWAS Data

In order to test the performance of the various methods for fine-mapping disease-
causing variants in GWAS, we develop a pipeline for simulating a realistic GWAS
study population. This pipeline is based on methodologies that have been used
in previous fine-mapping studies9, and it includes three main steps. First, a
forward evolutionary simulation is used to generate a population with realistic
patterns of genetic variation. Second, a model of disease incidence is specified.
And third, a case/control sample is drawn from the general population. In this
section, we will examine each of these steps in greater detail.

3.1 Forward Simulations

To perform forward simulations, we use the evolutionary simulation framework
SLiM10. We model the candidate region of the genome selected for fine-mapping
as a 1 Mb region of one chromosome. Then, we simulate a population of 10,000
diploid individuals forwards through time for 20,000 generations under specific
models of mutation and recombination to generate a population with realistic
patterns of genetic variation in the region. In this study, we use a uniform
mutation model in which novel neutral mutations are randomly introduced into
the population at a rate of m mutations/base pair/individual/generation across
the entire candidate region.

Additionally, we examine two models of recombination in this study. First,
we investigate a uniform recombination model in which recombinations ran-
domly occur in the population at a rate of rU breakpoints/base pair/individual/
generation across the entire candidate region. And second, we consider a recom-
bination hotspot model that more explicitly models the elevated recombination
rates typically found on the boundaries of LD blocks1. In this model, 1% of the
total length of the candidate region consists of 5 recombination hotspots evenly
spaced across the region, and 60% of all recombination events occur within the
hotspots. Furthermore, recombinations randomly occur inside hotspots at a
higher rate of rH breakpoints/base pair/individual/generation, and recombina-
tions randomly occur outside hotspots at a lower rate of rL breakpoints/base
pair/individual/generation.

Moreover, to relate the parameters of the two recombination models, we can
compute the values of rH and rL that are consistent with an overall average
recombination rate of rU by solving the following linear system of equations:{

0.99rL + 0.01rH = rU

1.5(0.99rL)− 0.01rH = 0
(7)
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In this system, the first equation specifies that the average recombination rate
across the entire candidate region is rU , and the second equation specifies that
60% of all recombination events occur within recombination hotspots. Finally,
Table 4 depicts the default parameter values that are used for the mutation
and recombination models in this study unless alternative parameter values are
specified.

Parameter Default Value
m 1.1× 10−8

rU 2.2× 10−8

rH 1.32× 10−6

rL 8.89× 10−9

Table 4: Default parameter values for mutation and recombination models in this
study.

3.2 Disease Models

Suppose that allele a at locus A/a contributes to the disease phenotype. To
quantify how allele a affects phenotypes in the population, we define several
parameters that allow us to specify a disease model for this situation. First,
we define the penetrance of a particular genotype XX, denoted P (XX), to be
the probability that an individual has the disease phenotype given that they
have genotype XX. Second, we define the genotype relative risk of a particular
genotype XX, denoted GRR(XX), to be how much more likely an individual
with genotype XX is to have the disease phenotype than an individual with
genotype AA. More precisely, genotype relative risk is computed as a ratio of
penetrances:

GRR(XX) =
P (XX)

P (AA)
(8)

From this definition, it is clear that we will always have GRR(AA) = 1. How-
ever, GRR(Aa) and GRR(aa) can vary considerably based on the disease model
used. Table 5 describes four commonly used types of disease models along with
the values of GRR(Aa) and GRR(aa) that are consistent with these models.
For the complex disease phenotypes analyzed in GWAS, an additive disease
model is most frequently assumed, although other types of genotype-phenotype
relationships are also possible2.

Next, we define the disease prevalence, denoted p, to be the fraction of
individuals in the entire population who have the disease phenotype. And lastly,
we define the disease allele frequency, denoted q, to be the fraction of individuals
in the entire population who have the disease allele a. Now, we can completely
specify a model for how the genotype at locus A/a affects disease phenotypes
in the population by providing the parameters GRR(Aa), GRR(aa), p, and q.
Notably, if these four parameters are given, then we can compute the penetrance
for each possible genotype at locus A/a under the assumption that this locus is
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Model Type Description Genotype Relative Risks

Additive
Each copy of the disease al-
lele increases disease risk by the
same additive amount

GRR(aa) = 2×GRR(Aa)− 1

Multiplicative
Each copy of the disease al-
lele increases disease risk by the
same multiplicative amount

GRR(aa) = [GRR(Aa)]2

Dominant
All individuals with at least one
copy of the disease allele have
the same disease risk

GRR(aa) = GRR(Aa)

Recessive
Individuals need two copies of
the disease allele to have an in-
creased disease risk

GRR(Aa) = 1

Table 5: Commonly used types of disease models and their genotype relative risks.

in Hardy-Weinberg equilibrium (HWE) by solving the following linear system
of equations:

p = (1− q)2 × P (AA) + 2q(1− q)× P (Aa) + q2 × P (aa)

0 = GRR(Aa)× P (AA)− P (Aa)

0 = GRR(aa)× P (AA)− P (aa)

(9)

In this system, the first equation expresses the disease prevalence as a weighted
average of penetrances where the penetrance for each genotype is weighted by
the frequency of that genotype in the population under HWE. Additionally, the
second and third equations are derived from the definition of genotype relative
risk (Equation 8).

Therefore, if the locus A/a is in HWE, the four parameters GRR(Aa),
GRR(aa), p, and q are sufficient to fully specify the disease model. In this
study, we assume that all disease loci are in HWE, which is consistent with the
forward simulation methodology used here. Table 6 depicts the default param-
eter values and computed penetrances that are used for the disease model in
this study unless alternative parameter values are specified.

Parameter Default Value
Model type Additive
GRR(Aa) 1.3
GRR(aa) 1.6

p 0.1
q 0.2

P (AA) 0.089
P (Aa) 0.116
P (aa) 0.143

Table 6: Default parameter values for the disease model in this study.
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Finally, we would like to note that if the candidate locus A/a is not in HWE,
the methodology from Equation 9 can still be used to compute the disease
penetrance for each possible genotype at locus A/a. However, now that the
population is not in HWE, the genotype frequencies in the population cannot
be simply computed from the disease allele frequency q. Consequently, in this
case, the genotype frequencies must be separately specified in the disease model.

3.3 Case/Control Sampling

After conducting a forward simulation and specifying a disease model, a case/
control cohort can be sampled from the simulated population using Algorithm
1. The algorithm takes as input a simulated population S, the parameters of
a disease model, the number of control individuals to sample nC , the number
of case individuals to sample nD, and a small number ε specifying the amount
of allowed variation in the disease allele frequency. Table 7 depicts the default
parameter values that are used for this algorithm in this study unless alternative
parameter values are specified.

The basic steps of the algorithm are as follows. First, select a disease locus
by randomly choosing a locus with allele frequency between q − ε and q + ε in
the simulated population. Next, while the case and control groups are not both
full, randomly choose two haplotypes from the population to form an individual.
Then, randomly draw the phenotype of this individual based on the penetrance
for their specific genotype, which gives the probability that the individual has
the disease phenotype given their genotype. Finally, add the individual to the
appropriate study group (case or control) based on their phenotype if that group
is not yet full.

Algorithm 1 Case/Control Sampling Algorithm

1: l← random locus with allele frequency between q − ε and q + ε in S
2: while the case and control groups are not both full do
3: (h1, h2)← 2 random haplotypes from S
4: g ← genotype of (h1, h2) at locus l
5: Pg ← phenotype of (h1, h2), randomly drawn from Bernoulli(P (g))
6: if group Pg is not full then add (h1, h2) to group Pg

7: end while
8: return l, the case group, and the control group

Parameter Default Value
nC 500
nD 500
ε 0.005

Table 7: Default parameter values for the case/control sampling algorithm in this
study.
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4 Performance of Mapping Methods

In this section, we compare the performance of the various mapping methods
described here on an assortment of simulated datasets.

4.1 Metrics of Performance

To compare the performance of the various mapping methods, we define two
metrics that can be used to summarize how effectively a particular method lo-
calizes the disease-causing variant in the population. First, we examine the
percentile of the causative SNP score in comparison to all SNP scores (PCT),
which captures how highly a particular mapping method prioritizes the disease-
causing SNP. And second, we investigate the distance from the causative SNP to
the highest-scoring SNP (DIST), which measures whether a particular mapping
method is able to effectively localize the disease-causing SNP to a small section
of the entire candidate region. This second metric can be particularly useful
for situations in which strong LD between the disease-causing SNP and other
nearby SNPs makes it difficult for a particular mapping method to pinpoint the
exact disease locus but the method can still effectively identify a small area of
the candidate region that contains that locus. Additionally, because multilo-
cus informativeness is a signed quantity, we use the magnitude of multilocus
informativeness values to compute these metrics.

4.2 MAF Thresholds

In both LD-based algorithms and GWAS pipelines, SNPs with low minor allele
frequency (MAF) are often filtered out of the set of examined SNPs. In LD-
based algorithms, applying a MAF threshold can be useful to avoid the extreme
values of LD that often result from the high variance in LD values at rare
SNPs11. Additionally, in GWAS pipelines, removing low MAF variants can be
useful to avoid unnecessary computations when the sample size is too small to
have enough statistical power to effectively detect associations between these
variants and the disease phenotype12.

As a result of these practices, we examine whether removing low MAF vari-
ants from the simulated datasets improves the performance of any of the map-
ping methods (Figure 2). Under both the uniform recombination model and the
recombination hotspot model, multilocus informativeness performs significantly
better when a MAF threshold of 0.1 is applied compared to when no MAF
threshold is applied. Specifically, the MAF threshold substantially increases the
percentile of the causative SNP under both recombination models, and it sub-
stantially decreases the distance from the causative SNP to the highest-scoring
SNP under the recombination hotspot model.

The improved performance of multilocus informativeness when a MAF thresh-
old is applied is likely due to the ability of rare variants to significantly affect
the computation of this measure. Specifically, because most individuals in a
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(a) (b)

(c) (d)

Figure 2: Effect of MAF thresholds on the performance of mapping methods. Ten replicate populations are
simulated under the uniform recombination model and the recombination hotspot model. Colored circles
show performance on individual populations, red lines show median values of the examined metric, boxes
extend to the upper and lower quartiles of the data, and whiskers extend up to 1.5 times the interquartile
range away from the median. An additive trend is used for the Cochran-Armitage trend test, and window
sizes of w = 101 and w = 27 are used for multilocus informativeness computations at MAF thresholds
of 0 and 0.1, respectively. The cluster of boxes for each MAF threshold contains data for multilocus
informativeness (left, green), the Cochran-Armitage trend test (middle, blue), and the chi-squared test
(right, teal). (a) PCT under the uniform recombination model. (b) PCT under the recombination hotspot
model. (c) DIST under the uniform recombination model. (d) DIST under the recombination hotspot
model.
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case/control cohort will have the same genotype at a low MAF SNP, this lo-
cus will only be able to distinguish a small number of cases and controls from
each other. Consequently, the GWAS directed informativeness of other SNPs
with respect to the low MAF SNP will often be high because the GWAS distin-
guishability graph for the low MAF SNP will only contain a small number of
edges that the GWAS distinguishability graphs for other SNPs need to cover.
Therefore, the low MAF SNP will often be weighted heavily in the computa-
tion of multilocus informativeness for other nearby SNPs. This heavy weighting
can become problematic in insufficiently large case/control cohorts because rare
SNPs that do not truly contribute to the disease phenotype can have a large
variance in how often they appear in each study group. For these reasons, it is
important to choose an appropriate MAF threshold based on the study size for
multilocus informativeness to perform well.

While MAF thresholds significantly affect the performance of multilocus
informativeness, they have little effect on the performance of the Cochran-
Armitage trend test and the chi-squared test. This result is expected because
the scores computed by single-SNP association tests for each SNP do not de-
pend on which other SNPs are considered in the analysis. Consequently, the
performance of these mapping methods should generally be consistent across
MAF thresholds. In all subsequent analyses in this study, we apply a MAF
threshold of 0.1 to the data to ensure that the performance of multilocus infor-
mativeness is not significantly worsened by the presence of rare variants in the
population. Additionally, we use a window size of w = 27 for all subsequent
multilocus informativeness calculations, as this window size is also used for the
0.1 MAF threshold here.

4.3 Robustness of Multilocus Informativeness

To verify that multilocus informativeness can robustly identify the genomic
structure surrounding disease-causing SNPs, we draw ten different case/control
samples from the same simulated population. Each of these samples uses the
same disease model parameters but selects a different random disease locus
based on those parameters. We set GRR(Aa) = 3 and GRR(aa) = 5 to ensure
that the effect of the disease allele is always large enough to be detected, and
we investigate whether multilocus informativeness can consistently locate the
disease locus regardless of its location in the candidate region (Figure 3).

Multilocus informativeness locates the disease locus very accurately in all
ten samples. Specifically, the causative SNP is placed above the 0.996 percentile
in eight of the ten samples, and it is placed above the 0.988 percentile in all
ten samples. Furthermore, even when multilocus informativeness places the
causative SNP at a relatively lower percentile, the distance from the causative
SNP to the highest-scoring SNP is still very small, indicating that the measure
is still successfully localizing the disease association signal. Therefore, these
results demonstrate that multilocus informativeness is an effective and robust
method for fine-mapping disease-causing variants using local genomic structure
and association data.
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(a)

(b) (c)

Figure 3: Robustness of multilocus informativeness under the recombination hotspot model. (a) Locations
of the randomly selected disease loci across the candidate region. The bolded locus is randomly selected
three times, and all other loci are randomly selected once. (b) Percentiles of the causative SNPs in decreasing
order. (c) Distances from the causative SNPs to the highest-scoring SNPs in increasing order.
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4.4 Comparison of Mapping Methods

4.4.1 Overall Performance

To compare the overall performance of multilocus informativeness to other map-
ping methods, we simulate 100 replicate populations under the recombination
hotspot model (Figure 4). When the percentile of the causative SNP is exam-
ined, multilocus informativeness performs the fourth best of the five mapping
methods tested, as it only outperforms the Cochran-Armitage trend test with
a recessive trend. However, when the distance from the causative SNP to the
highest-scoring SNP is investigated, multilocus informativeness compares much
more favorably to the other mapping methods. Specifically, multilocus infor-
mativeness has the lowest upper quartile and the second lowest median of all
the methods tested, and only the Cochran-Armitage trend test with an addi-
tive trend has a lower median. These results demonstrate that while multilocus
informativeness may not place the causative SNP in the highest percentiles as
frequently as some other mapping methods, it still often localizes the disease
association signal to the correct area of the candidate region.

Additionally, while the Cochran-Armitage trend test with an additive trend
performs the best overall, as would be expected when an additive disease model
is used, the Cochran-Armitage trend test with a recessive trend performs the
worst overall. This discrepancy demonstrates the importance of choosing an ac-
curate trend when using the Cochran-Armitage trend test, as inaccurate trend
choices can significantly diminish statistical power. In this case, the supe-
rior performance of the additive and dominant trends compared to the reces-
sive trend can be explained by analyzing the average contingency table for a
causative SNP among these replicate study populations (Table 8).

Genotype AA Aa aa
Controls 323.38± 11.99 157.68± 11.45 18.94± 4.43
Cases 285.57± 12.09 186.36± 11.36 28.07± 5.21

Table 8: The average contingency table for the causative SNPs in the study populations
analyzed in Figure 4. The disease allele is denoted a, and the mean and standard
deviation is shown for each cell in the contingency table.

Based on the simulation parameters used here, many of the excess disease
alleles present in the case group appear in heterozygous individuals. Conse-
quently, because the weights vector for a recessive trend does not differentiate
between the AA and Aa genotypes, this trend test discards a lot of important
data about how the disease allele affects phenotypes, resulting in diminished
statistical power. In contrast, because the weights vector for both the addi-
tive and dominant trends do differentiate between the AA and Aa genotypes,
these trend tests are able to identify the disease locus much more effectively.
In all subsequent analyses in this study, we will use an additive trend for the
Cochran-Armitage trend test, which should optimize the performance of this
method under the additive disease models simulated here.
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(a)

(b)

Figure 4: Performance of various mapping methods. Colored circles show performance
on individual populations, red lines show median values of the examined metric, boxes
extend to the upper and lower quartiles of the data, and whiskers extend up to 1.5 times
the interquartile range away from the median. From left to right, the mapping methods
examined are multilocus informativeness (green), the Cochran-Armitage trend test
with dominant trend (light green), the Cochran-Armitage trend test with recessive
trend (light blue), the Cochran-Armitage trend test with additive trend (blue), and
the chi-squared test (teal). (a) Percentiles of the causative SNPs. (b) Distances from
the causative SNPs to the highest-scoring SNPs.
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4.4.2 Correlations in Performance

To determine whether different mapping methods are more effective in different
study populations, we generate correlation plots that compare the performance
of the mapping methods on individual case/control cohorts (Figure 5). When
the percentile of the causative SNP is examined, the Cochran-Armitage trend
test regularly outperforms both multilocus informativeness and the chi-squared
test. Notably, the superior performance of the Cochran-Armitage trend test
over the chi-squared test is consistent with the observation that the Cochran-
Armitage trend test has higher statistical power than the chi-squared test when
the investigated trend is accurate, as is the case here. Additionally, the chi-
squared test also outperforms multilocus informativeness more often than not,
although there are still several examples where multilocus informativeness is
more effective.

Furthermore, when the distance from the causative SNP to the highest-
scoring SNP is examined, there are fewer clear trends in which mapping method
is most successful. Specifically, there are many study populations in which each
mapping method outperforms each other mapping method, suggesting that each
mapping method may perform best on study populations with different char-
acteristics. Future work should investigate this hypothesis further and attempt
to identify specific attributes of study populations that may correlate with the
superior performance of a particular mapping method.

4.5 Effects of Altering Simulation Parameters

Finally, to identify any major trends in how the simulation parameters affect
the performance of the mapping methods, we examine the effectiveness of each
method when a variety of parameters are individually altered to a range of
different values. Figure 6 depicts the effects of modifying the parameters of the
forward simulation and the sampling algorithm, and Figure 7 depicts the effects
of modifying the parameters of the disease model. For each set of parameters
tested, ten replicate populations were generated for examination.

We observe that higher recombination rates generally improve the percentile
of the causative SNP, a trend that likely reflects the difficulty in pinpointing the
exact causative SNP in regions with low recombination rates and high LD. How-
ever, we also observe that the distance from the causative SNP to the highest-
scoring SNP is generally smaller for lower recombination rates under the re-
combination hotspot model, which may indicate that recombination hotspots
produce clearer LD blocks when the recombination rate outside of the hotspots
is smaller. Additionally, we notice that the percentile of the causative SNP
generally increases as the number of cases and controls increases, as would be
expected. Interestingly, increasing the number of cases and controls in the study
population only seems to decrease the distance from the causative SNP to the
highest-scoring SNP when multilocus informativeness is used. This observation
suggests that of the mapping methods examined here, multilocus informative-
ness may be the most effective at using additional cases and controls to further
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(c) (d)

(e) (f)

Figure 5: Correlations in performance of mapping methods on the study populations analyzed in Figure
4. (a)-(b) PCT and DIST of multilocus informativeness and the Cochran-Armitage trend test. (c)-(d)
PCT and DIST of multilocus informativeness and the chi-squared test. (e)-(f) PCT and DIST of the
Cochran-Armitage trend test and the chi-squared test.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Effects of altering parameters of the forward simulation and the sampling algorithm. Colored
circles show performance on individual populations, red lines show median values of the examined metric,
boxes extend to the upper and lower quartiles of the data, and whiskers extend up to 1.5 times the in-
terquartile range away from the median. Each cluster of boxes contains data for multilocus informativeness
(left, green), the Cochran-Armitage trend test (middle, blue), and the chi-squared test (right, teal). (a)-(b)
PCT and DIST under the uniform recombination model with various uniform recombination rates rU . (c)-
(d) PCT and DIST under the recombination hotspot model with various average recombination rates rU .
(e)-(f) PCT and DIST under the recombination hotspot model with various numbers of cases and controls
nD = nC .
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(c) (d)

(e) (f)

Figure 7: Effects of altering parameters of the disease model under the recombination hotspot model.
Colored circles show performance on individual populations, red lines show median values of the examined
metric, boxes extend to the upper and lower quartiles of the data, and whiskers extend up to 1.5 times the
interquartile range away from the median. Each cluster of boxes contains data for multilocus informativeness
(left, green), the Cochran-Armitage trend test (middle, blue), and the chi-squared test (right, teal). (a)-(b)
PCT and DIST with various genotype relative risks GRR(Aa) and an additive disease model. (c)-(d) PCT
and DIST with various disease allele frequencies q. (e)-(f) PCT and DIST with various disease prevalence
values p.
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localize the region containing the causative SNP.
Furthermore, as the genotype relative risk at the disease locus increases, the

percentile of the causative SNP generally increases and the distance from the
causative SNP to the highest-scoring SNP generally decreases. These trends are
expected given that disease loci with higher genotype relative risks have larger
effects on the disease phenotype and are therefore easier to detect. Additionally,
we notice that the percentile of the causative SNP is highest for intermediate dis-
ease allele frequencies. We believe that the difficulty in identifying rare causative
SNPs likely results from these SNPs not appearing often enough in the study
populations to have very strong disease association signals. Similarly, we believe
that the difficulty in identifying very common causative SNPs likely results from
these SNPs appearing too frequently in the control groups to have very strong
disease association signals. Finally, we do not observe any significant trends in
how disease prevalence affects the performance of the mapping methods.

5 Conclusion

In this study, we have found that multilocus informativeness is an effective
method for fine-mapping disease-causing variants in GWAS using both LD
and association data. We have determined that applying an appropriate MAF
threshold is essential to ensure that multilocus informativeness performs well,
and we have demonstrated that this method is sufficiently robust to detect
multiple different disease associations in the same population. Moreover, while
multilocus informativeness sometimes does not place the causative SNP in as
high a percentile as other mapping methods, multilocus informativeness can of-
ten localize the disease association signal to a small area of the candidate region
more effectively than alternative approaches.

Finally, we would like to highlight several important limitations of this study.
First, we only compare the performance of multilocus informativeness to existing
single-SNP tests of association. Future work should also investigate the perfor-
mance of alternative fine-mapping methods such as those based on penalized
regression, Bayesian statistics, and genome annotation. Second, we only ana-
lyze relatively small study populations, as most analyses presented here examine
case/control cohorts with 500 individuals in each study group. Future studies
should explore the performance of these mapping methods in much larger study
populations, as modern GWAS can include tens of thousands of individuals.
And third, we only inspect the performance of multilocus informativeness on
simulated datasets. Future work should analyze the performance of multilocus
informativeness on real GWAS datasets, as real data often contain more com-
plex patterns and interactions that can make identifying disease-causing SNPs
more difficult.

In conclusion, despite the limitations highlighted here, the favorable results
obtained in this study demonstrate that multilocus informativeness is a promis-
ing new method for effectively fine-mapping disease-causing variants in GWAS.
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