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Abstract

HapROSE is a software package for Long Range Haplotype Phasing that imple-
ments different heuristics for haplotype clustering. 1 examine how a model of
variable-memory inference proposed by Ron et. al. (1996) compares with the
output of a variant which is at the heart of BEAGLE (Browning and Browning
2006). The BEAGLE heuristic adapted the algorithm proposed in the Ron et.
al. paper in order to optimize for speed and a finite number of training samples,
and is a current gold standard algorithm for this problem. I then implemented
the stochastic EM algorithm used by BEAGLE, and compare phasing accuracy
between the two heuristics under a number of different conditions. I also explore
new methods of inferring the existence of haplotype blocks through the use of
tracts in long reads, leveraging state of the art PacBio genome sequencing data
and the Positional Burrows Wheeler transform.
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1 Introduction

Humans are diploid organisms: their cells contain two sets of chromosomes, one
from each parent. The DNA sequence of one of these chromosomes is called
a haplotype. A genotype is the set of both haplotypes. Haplotype phasing is
the problem of inferring a likely set of haplotypes that, when combined, pro-
duce an observed genotype. This becomes an issue because modern methods
of genome sequencing require that the DNA be cut into smaller pieces, and
reassembled from their overlapping segments. This works for a majority of the
DNA strand since large portions of it are identical and will agree, but where
there are mutations there is potential for half of the fragments which map to
a location to have evidence of one variant, and half of the fragments to have
evidence of a different variant. This ambiguity makes it difficult to perform
inference tasks, since there is a large combination of possible haplotypes that
could have generated any particular observed genotype. While this phasing
problem can be solved exactly for shorter sequences, it becomes computation-
ally intractable at the chromosome scale, leading to a rich variety of proposed
heuristics. HapROSE implements an algorithm for variable-memory inference
put forward by Ron et. al. [Ron et al., 1995] and compares its performance with
that of a modification of the algorithm proposed by Browning and Browning
(2006), and implemented in their BEAGLE [Browning and Browning, 2007a]
software package. This BEAGLE algorithm is a modified form of Ron’s that
changes the criteria for node similarity to be a function of empirical counts. I
investigate the ways in which this different behavior affects how the structure
of the model being used to perform phase inference differs from that of a model
constructed using Ron’s algorithm, which is proven to converge asymptotically
to the true distribution.

This paper also explores new methods of identifying haplotype blocks through
the use of tracts in long reads, and proposes an application for state of the art
PacBio genome sequencing data and the Positional Burrows Wheeler transform.
We discuss how HapROSE can be enhanced to be used alongside a set of al-
gorithms developed at the Istrail Lab collectively called HapCompass, a tool
for phased haplotype assembly. We discuss how this additional support would
enable the algorithm to accurately perform a long-range (chromosome wide)
phasing while minimizing any switch errors (wrongful assignments of a phas-
ing to a chromosome) that would occur as the algorithm transitioned between
haplotype blocks.

2 The Haplotype Phasing Problem

DNA is a polymer of four nucleotide base pairs Adenine, Cytosine, Thymine,
and Guanine, commonly abbreviated A, C, T, and G respectively. A human
being has two different copies of each chromosome, and the DNA sequence of
one of these strands is called a haplotype. We can treat the sequence of bases in
each haplotype as a long string from the four-letter alphabet {A, C, T, G}. The
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set of two haplotypes present in a human is called that human’s genotype. It
is of great biological interest to identify those places where the DNA sequences
of two humans differ, since DNA serves as a “blueprint” for proteins in the
human body. Many diseases that involve the incorrect folding, malfunctioning,
or misregulation of a protein can trace the defect back to some variation of DNA
in that organism’s genotype. When performing inference to determine which
differences are of interest, it is often more beneficial to consider only those
positions in the DNA strand where there are known different variations from
person to person. We call these differences “Single Nucleotide Polymorphisms”,
or SNPs.

To make this concept more concrete, let us consider a particular example.
Imagine two strands of DNA N bases long that are mostly identical in much
of the human population except for at two positions, ¢ and j, 0 <7 < j < N,
where WLOG at position ¢ some percent of the population has a C' and the
remainder has a GG, and at j some percent of the population has a T and the
remainder has a G. We note that we do not need the entire DNA sequence from
0 to IV to uniquely identify which haplotype an individual possesses - we merely
need to know which variant they have at position ¢ and which variant they
have at position j. We make another simplifying assumption when defining the
haplotype phasing problem - the infinite sites assumption. This assumes that
mutations are uniformly distributed along the genome, and since there are so
many base pairs (3.2 billion) in the human genome we assume that a mutation
can occur exactly once at any given site. This results directly in the biallelic
assumption, which is that at any given site ¢ there are only two different possible
variants, or ”alleles” which we will arbitrarily encode as 0 and 1.

This allows us to describe a haplotype of size N containing n < N variant
sites as a sequence {0,1}", a more convenient and usually much shorter string.
Let us then define a genotype, which the reader may recall is a set of two
haplotypes, as a sequence {0, 1,2}" where

e a ( is placed at position 7 if both haplotypes that compose the genotype
have a 0 at that position

e a 1 is placed at position 7 if both haplotypes that compose the genotype
have a 1 at that position

e a 2 is placed at position ¢ if one haplotype has a 0 at position ¢ and the
other haplotype has a 1 at position %

We define the above process of generating a genotype from two haplotypes
as conflating two haplotypes, and will use + to denote conflation. We will use
the notation of Halldorsson [Halldorsson et al., 2004] and write h+ h = g if the
conflation of h and h is ¢g. In addition, we will use the kronecker delta Spame =1
if h 4+ h = ¢, and 0 otherwise. Finally, we will use ¢, to denote the probability
of a haplotype, and ¢, to denote the probability of a genotype. As coined by
Gusfield [Gusfield, 2000], we will say that a site is ambiguous in a genotype if
it has a value of 2.
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2.1 Haplotype Phasing
We formally define the problem of haplotype phasing as follows:

e Given: G, an n X m matrix of genotypes

e Output: H, a 2n x m matrix of haplotypes that “explains” G, i.e.:

Vg€ G 3dhi,hs € H:hi+ho=g
or, equivalently,

h2i+h2i+1 :gi,i:0,1,2,...,m

The phasing problem is complicated by the fact that we do not just seek any
set of haplotypes H that adequately explains G, but rather we seek the set of
haplotypes that correspond to the true haplotypes of the person whose genotype
we are performing inference on. We note that if we simply go from left to right
on a genotype and “flip a coin” to assign a 0 or 1 to any ambigouous site to
create a single explanatory haplotype, the other haplotype is fully determined.
However, the probability of this explanation being biologically correct under the
assumption that all haplotypes are equally likely is %, where k is the number of
ambiguous sites, since we could have arbitrarily generated either of the haplo-
types that, when conflated, equal that genotype. This is a very low probability,
so we must appeal to a number of features intrinsic to the underlying biology
that allow us to determine whether a phasing is “good” by assuming certain
properties hold. Doing so allows us to gauge our success by means of some
objective function.

Trivially, an ideal objective function would be to use the edit distance be-
tween the inferred haplotypes and the true haplotypes, but in most cases this
inference is being performed precisely because the true haplotypes are unknown.
What follows is a brief review of some objective functions for evaluating the qual-
ity of a phasing - readers wishing to dive deeper into the subject are invited to
read [Halldorsson et al., 2004]

2.1.1 Parsimony Phasing

The principle of parsimony states that a phasing is “good” if it uses the fewest
possible different haplotypes to explain the genotypes. That is, the set of dis-
tinct haplotypes in H is as small as possible. This principle stems from the
assumption that individuals in a population share a common ancestor, so it is
more likely for them to have shared haplotypes than for them to have different
haplotypes.
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2.1.2 Maximum Likelihood Phasing

Maximum Likelihood phasing seeks to find the most likely set of haplotypes that
could have been conflated to explained the observed genotypes. This assumes
Hardy-Weinberg Equilibrium, which is to say, the probability of observing a
genotype is equal to the product of the probabilities of observing its haplotypes.
More formally,

¢ = > ooy
h+h=g

Under this framework, we seek a set of haplotypes H that maximizes

L(¢u) = [ (¢°)"4°

geG

subject to the constraints

> =land ¢, >0vhe H
heH¢p

2.2 Short Range Phasing

We say that a phasing problem is “short range” if there are 100 or fewer sites
being considered. For a short range phasing problem, there are typically few
enough possible solutions that we can practically enumerate them in the ex-
ponential amount of space and time required. Oftentimes for these sorts of
problems we can optimize the above objective functions exactly. There are a
variety of methods for short range phasing: the two most relevant to our pur-
poses are explained in the following sections.

2.2.1 Clark Phasing

The underlying principle of Clark phasing is simple: if we have seen a haplotype
before, it is more likely to occur again in a sample than a haplotype which we
have not seen before. We iteratively apply a rule called “Clark’s Rule”, which
states that we should try to resolve a genotype with a haplotype we have seen
or inferred the existence of before. The general algorithm proceeds as follows:

There are a number of weaknesses associated with Clark phasing - if we
cannot find any genotypes that can be unambiguously phased, we cannot begin
the algorithm. Likewise, since it is taking a greedy approach to phasing, dif-
ferent permutations of haplotypes will result in different phasings depending on
which haplotypes are resolved before others. Finally, if any genotypes are left
unexplained after this process, they are said to be “orphaned”, and it is unclear
how to try to explain them.

A brute force method to find the optimal set of haplotypes to explain a
set of genotypes under the clark rule would be to perform the above algorithm
on ever permutation of the haplotypes. By enumerating all permutations, we
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Algorithm 1 Clark Phasing

1: for each genotype g € G that can be unambiguously phased do
2 let h + A’ explain g

3 add h and b’ to H

4 remove g from G

5. end for

6: while 3h e H: h+h' =g € G for any 1/ do
7 let h + A’ explain g

8 add B’ to h if it is not already in h

9: remove g from G

10: end while

11: return explanations

generate the set of all possible explanations, and can choose the “best” set of
explanations. According to Halldorsson, there are three different metrics that
we can use to decide if a set of explanations is a good set of explanations:

e Minimize the number of orphans

e Maximize Unique Resolutions. This means that, given your set of explana-
tory haplotypes, the largest number of genotypes has a single explanatory
pair.

e Minimize Inference Distance. This means that we use as few applications
of Clark’s rule as possible.

This is a short-range technique precisely because as the sequences the al-
gorithm is applied to gets longer, the probability that a sufficient number of
genotypes can be resolved decreases. A randomized version of this algorithm
would be to start from some permutation of the data, or subset of permutations,
and choose from among the explanations generated by the subset. There are
a variety of ways to choose the permutation to start with, perhaps by sorting
the haplotypes in order from least number of ambiguous sites to most number
of ambiguous sites, or by some other means.

2.2.2 ML Phasing

Another way we can choose a “good” explanation is to choose the most likely
set of haplotypes. To define this problem well, we first assume a uniform distri-
bution on all of the genotypes in G. This implies that the probability of some
genotype g € G is ng?, where n is the number of times that genotype occurs in
G. We find that

n

L=]I¢" =11 >_ onon
=1

=l pth=g,
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where ¢y, is derived from the frequency of the haplotype h; in the set H. As
in Clark phasing, this encourages the use of the same haplotype to explain
multiple genotypes. Calculating this likelihood involves enumerating all possible
haplotypes that explain each genotype and performing an EM algorithm on that
set given an arbitrary set of initial frequencies on the haplotypes.

Algorithm 2 EM Phasing
1: for unique genotype g € G do

2 for explanation (h,h') of g do

3 add h and b’ to H if it is not already in H
4 end for

5. end for
6
7
8
9

. Initialize haplotype frequencies randomly

: while the likelihood has not converged do > Expectation
for each genotype g do

for each explanation (h,h") do

10: Use ¢p,, ¢}, to calculate ¢,

11: end for

12: end for > Maximization
13: for each genotype g do

14: for each explanation (h,h’) do

15: Use ¢4 to find the most likely values of ¢, and ¢},

16: end for

17: end for

18: end while
19: Use the most likely explanation to explain each genotype
20: return explanations

This yields exact solutions, but requires exponential time and memory since
it must enumerate and iterate over all possible explanations of the genotypes.
As in Clark phasing, this quickly becomes intractable.

2.3 Long Range Phasing

A Long-Range Phasing problem generally has a thousand or more different
alleles in a particular genotype that we want to phase. For long-range phasing,
we are considering site counts in the thousands. Heuristics are required to
drastically reduce the search space of possible haplotypes from 2™ (where m is
the number of ambiguous sites) to a more tractable quantity. The fundamental
insight required to construct a heuristic for long-range phasing is the same as in
short range phasing - we want individuals to share haplotypes. The haplotypes
in the long-range case, however, are too long for us to reasonably expect to find
a whole genotype that can be unambiguously phased, or for us to be able to
effectively enumerate all of the explanations for each genotype.

It is enough, then to relax our condition of “organisms should share hap-
lotypes” to the condition, “organisms should share parts of haplotypes”. This
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assumption is well supported by biology, which makes the assumption that all
human beings are descended from a common ancestor, and the theory of evolu-
tion provides a means for which different identical segments of DNA can move,
change, and be exchanged in the population, through the mechanisms of muta-
tion and recombination. We therefore turn our attention to methods of cluster-
ing haplotypes in order to reveal this sharing and highlight those substrings of
DNA that may have been inherited from a common ancestor.

This is achieved by appealing to the coalescent model, which models rela-
tionships between human beings as having been constructed via a tree structure
where a single shared ancestor of a population is the source of a particular mu-
tation that is present in a large proportion of the population, and as a result
of this inheritance haplotypes descended from the same parent share the same
mutations. Recombination events result in entire segments of DNA ’staying
together’ when they are passed on and independently segregate, and that geno-
types of individuals that are not related to each other at the current generation
may be able to inform each other’s haplotype phase thanks to IBD (identity
by descent). In particular, these methods take advantage of segments of DNA
which are in linkage disequilibrium - that is to say, two different alleles ¢ and j
will appear together with a probability that is different from the product of the
probability of ¢ times the probability of j.

Dsp =paB —papPB

A group of SNPs in linkage disequlibrium with one another forms a haplotype
block, a region of DNA that contains a sequence that is very likely to appear in
another human being’s genome sequence. This results in individuals that have
the same segment of a haplotype as one another. By identifying the limited
sample space of these substrings, we are able to drastically reduce the number of
possibilities that we will consider as potential solutions to the phasing problem.

2.4 Software Packages for Long-Range Phasing

An excellent review of different algorithms that have been implemented to per-
form long-range phasing using these coalescent-based methods can be found at
[Browning and Browning, 2011], but for completeness’ sake I shall repeat them
here.

A package called Arlequin implements the EM algorithm, a package called
HAPLOTYPER|Niu et al., 2002] implemented Gibbs sampling to maximize a
partition-ligation strategy, and a package called PL-EM implements Partition-
Ligation Expectation Maximization. Partition-Ligation is a method of extend-
ing the number of ambiguous sites that EM can phase by partitioning a long
string into short strings that are each individually phased (partitioning) then
putting them back together (ligating). Population-based statistical phasing
methods, or, methods that attempt to infer the coalescent tree that gave rise
to the haplotypes, are implemented by PHASE [Stephens and Scheet, 2005],
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Haplotype Blocks

Block 1 Block 2 Block 3 Block 4
00101 110001010 1010010 100101100
10010 111000110 0110111 010011100
01011 1100011 000111011
011010011

Key:

® Haplotype Block
“Recombination Hotspot”

Figure 1: Often there will only be a small number of haplotype sequences that
arise in a “block” of DNA, separated by areas where recombination is common.
We call such segments haplotype blocks.
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fastPHASE [Scheet and Stephens, 2006], MACH [Li and Stephens, 2003], and
IMPUTE2 [Howie et al., 2009).

BEAGLE [Browning and Browning, 2007b] is a software package that, rather
than explicitly modelling the recombination and mutation that happens in the
coalescent tree, attempt to capture haplotype blocks through a method of hap-
lotype clustering that relies on what is called an Acyclic Probabilistic Finite
Automata. HapROSE contains an implementation of the inference algorithm
used by BEAGLE.

Most recently, an algorithm called EAGLE [Loh et al., 2015] was able to
perform quick and accurate phasing on a large cohort in the UK, a population
with a large and diverse set of haplotypes. It accomplished this by using IBD
information and by performing inference on an HMM with “aggressively pruned”
hidden states to keep the problem tractable.

3 Haplotype Clustering for Long Range Phasing

3.1 Inferring Haplotypes from Haplotype Clusters

There is a long history of using the concept of haplotype clusters to aid in
solving the phasing problem. This approach has its roots in the Li and Stephens
framework, which uses the concept of clusters to create an HMM whereby each
genotype is emitted by some hidden haplotype cluster. Their key insight was
that regions of linkage disequilibrium among multiple SNPS was indicative of
the recombination process, and that by considering all SNPS that are in LD in
a local region we can be used to infer SNPS in an unrelated individual in the
population. This idea of using “surrogate parents” to aid in haplotype phasing
was elucidated and built upon by the algorithms to come, but the general core of
the theory is that haplotypes can be thought of as a set of loosely linked alleles
that enter different clusters, or blocks, and switch between them at intervals.

3.2 PFA

One way to model haplotype clustering is to use a data structure known as the
Acyclic Probabilistic Finite Automata [Ron et al., 1995]. To understand these,
we must first wrap our heads around the more general PFA (Probabilistic Finite
Automata).

PFA’s are finite state machines which generate strings in a probabilistic
manner. Since, to capture the behavior of DNA, we are interested only in finite
strings, we will consider a PFA that has both a final symbol and a final state.
Beginning at some start state, we transition to some other state provided by the
transition function, with a probability determined by the transition probability
function of the PFA. In this manner, we traverse the PFA until we hit an end
state, in which case the string terminates.

More formally, a PFA M is a 7-tuple (Q, g0, 45, %, (, T,7) where

e () is a finite set of states
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qo € @ is the starting state

® g5 € Q is the end state

Y. is a finite alphabet

¢ ¢ X is the final symbol

7:Q x {XU{(}} = QU {qy} is the transition function
o v:Q x{XZU{¢}} — [0,1] is the next symbol probability function

such that Vq € QZaezu{g} v(q,0) = 1, that is, all of the probabilities of
transitioning from some state ¢ to any other state are probabilities that sum to
1. We must be able to reach the final state from any other state ¢ with nonzero
probability.

We generate a finite string on the alphabet ¥ by starting from starting
state qp, then choosing the next state s;;; in the string using the next state
probability function function v(g;, si+1). We then add to the string the symbol
generated by 7(g;, o) Therefore, the probability of any particular string is

-1
PM(s) = HV(%&H)
i=0

3.3 APFA

An APFA (Acyclic Finite Probabilitic Automata) is a variant of PFA. As the
name implies, it does not contain any cycles. Additionally, we will restrict
our analysis to levelled APFA - all nodes in a levelled APFA are associated
with a certain depth. The total depth of such an APFA is defined as the
length of the longest path between the start state go and the end state gy.
We define the start state as being at depth 0. and the final state as being at
depth m. Such an APFA generates strings of length up to m. A key claim
of the phasing algorithm implemented by BEAGLE and hapROSE is that this
structure is a convenient way to capture LD between SNPs, and can be used to
great effect in order to infer the phase of a genotype. If some SNP s; is in strong
LD with a sequence of other SNPs immediately after it in the string, then we
can learn an APFA that generates a string where the symbol associated with
s1 transitions through the sequence of other observed alleles with probability
proportional to its observed frequency in the sample. This framework possesses
inherently markovian properties that we will leverage in the inference algorithm.
Phrased in a different way, we assume that there is some APFA that generates
the haplotypes which are conflated to become the observed genotypes we are
attempting to phase, and our goal is to try to learn that APFA.
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3.4 Learning an APFA

Let us consider a set of inputs, n strings of length m, that are generated by
an APFA. We are interested in inferring the generating APFA from the input
strings. We first establish a measure of how “far away” two APFAs are from
one another - Kullback-Liebler divergence,

PM(s)

Dyt [PMIIPY] = 37 P (s)log— 2]

sEX*(

It is important to note that while not a true distance metric (it does not obey
the triangle inequality), if the KL divergence between two APFA is 0 then the
APFA are equivalent, which means that if we were given an infinite number of
strings from the first APFA and an infinite number of strings from the second
APFA we would not be able to tell that there were two different generating
APFA. So, our algorithm does a good job if it can produce an inferred APFA
with a KL divergence of less than some ¢ away from the target APFA.

3.5 BEAGLE and Ron et. al. Clustering Algorithms

Ron et. al. [Ron et al., 1995] proposes an algorithm for learning an APFA
and rigorously proves that the algorithm outputs a good hypothesis with high
probability, and that this can be accomplished efficiently in time polynomial in
its parameters. Specifically, we define the following:

e ¢, a confidence parameter
® ¢, an accuracy parameter
e 1, a distinguishability parameter

e 1, an upper bound on the number of states in the APFA

Y., an alphabet

Ron’s learning algorithm outputs with probability 1 —4 an e-good hypothesis
with respect to the target APFA in time polynomial in 1/¢, logl/§, ||, n, and
1/p.

Both the BEAGLE and Ron implementations use the same basic frame-
work. We begin by constructing a tree from the input strings (haplotypes in
our particular application). This is done as follows:

Simply stated, the sample tree is a tree where every haplotype is represented
as a chain of nodes from root to leaf, and the edge weights between nodes
correspond to the number of times a haplotype appears.

After this tree is constructed, we look for any two nodes in the tree such
that the subtrees rooted at those two nodes generate strings with a probability
that is indistinguishable from one another. We then say that those two nodes
are similar, and “collapse” the tree by folding (joining) the two subtrees into a
single subtree that has the combined counts of both.
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Algorithm 3 Build Sample Tree

1: for h € H do

2 Begin at the root
3 while h has a next character ¢ do
4: if lcurrNode.hasChild(c) then
5: currNode.addChild(c)
6
7
8

end if
edgeCount(currNode, currNode.getChild(c)) += 1
currNode < currNode.getChild(c)

o: end while

10: end for

Algorithm 4 Infer APFA
1: Let D be the maximum APFA depth
2: Let S be the set of input strings
3: Construct Sample Tree from S //initial state of the APFA we are to learn
4: Initialize d(i) to 0 //current depth in APFA
5. while d(i) < D do
6 Find nodes j and j’ from level d(i) such that
e A significant number of sample strings pass through both nodes

e The nodes are Similar, as determined by a call to SIMILAR(j,j’)

7: if A similar pair of nodes is found then

8: FoLp(j,j’)

9: else

10: d(i) = d(i+1) //inspect the nodes at the next depth
11: end if

12: end while
13: return APFA
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These similarity functions will be our primary focus, but before we can dive
more deeply into how they behave we must first more formally define some
quantities.

e Let G be the graph at its current state of collapse
e Let 5 be the current node

e Let the edge exiting j that corresponds to emitting symbol ¢ be denoted
as mj(o), Vo e XU(

e Associate with each such edge a count m;(o) € N that counts how many
strings in the input set pass through that edge.

e If edge mo is a directed edge from node j to some other node j’, then let
the transition function 7(j,0) = 5’

We fold two nodes ¢ and j together by pointing all of both node’s parents to
the same node, combining their outgoing edge counts, and recursively folding
their children. This can be interpreted as meaning that, regardless of whatever
path through the APFA was taken to get to either node 7 or node j, once you
are at either of those nodes the probability that the string will have a certain
suffix is equal, or at least, is very similar.

Algorithm 5 Fold Nodes
1: for all nodes with edges that go to j” do
set the corresponding edge to end at j
. end for
: for all symbols 0 € ¥ U ( do

2
3
4
5:
6: if thenm;(c) =0 and mj (o) >0
7 Set e to start at j

8

9

end if
: if thenm;(c) > 0 and m; (o) >0
10: Foup(7(j,0),7(j,0))
11: end if
12: mj(o) < m;(o) +mj (o)
13: Remove j’ from G
14: end for

3.6 Ron Similarity Function

Ron’s similarity function is as follows:

The main idea of this algorithm is that it calls two nodes 7 and j similar if
and only if they are p indistinguishable, which means that the probability of
any suffix that could arise after node i is indistinguishable from the probability
that of any suffix after node j.
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Algorithm 6 Ron Similarity

Require: u,p,,v,p,

1 if |py — py| > 1/2 then

2 return non-similar

3: else

4 if p, < p/2 and p, < p1/2 then

5: Return similar

6 else

7 for c € ¥U( do > Calculate probabilities
8 p; = pumu(g)/mu

9: p; = PouMy (0)/mv

10: '+ 7(u,0)

11: v+ 1(v,0)

12: if SIMILAR(W’, p’u, v’, v'u) = non-similar then
13: return non-similar

14: end if

15: end for

16: end if

17: end if

18: return similar

3.7 BEAGLE Similarity Function

A key difference between Ron’s similarity algorithm and BEAGLE’s similarity
algorithm is that, where the Ron algorithm returns a true or false similarity
judgement, the BEAGLE algorithm assigns to each pair of nodes a real-valued
similarity score. This score is calculated as a function of the edge counts entering
and leaving the node. In particular, it looks at all corresponding subtrees of
two nodes, and determines the maximum similarity score between any of the
subtrees. If this number is below a certain threshhold, which is also a function of
the total number of incoming edges of the two nodes being compared, then the
nodes are said to be similar. BEAGLE merges all pairs of nodes at a particular
depth of the APFA from 0 to D, in order from highest to lowest similarity score.

3.8 Clustering Accuracy: Ron vs BEAGLE

The primary difference in these two heuristics is how they perform on reference
panels with fewer samples. As the number of training haplotypes increases,
we expect both algorithms to learn APFA that become increasingly similar to
one another. The BEAGLE algorithm consistently produces APFA with fewer
edges than the Ron algorithm for lower numbers, while they both converge to
the same APFA at higher numbers of training samples. The APFA depicted in
Figure 4 is the “correct” APFA, and we see that the Ron algorithm with a p
parameter of 0.5 has a difficult time approximating it at lower sample counts.
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Figure 2: Ten samples, short genome (15 alleles)
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Figure 3: Hundred samples, short genome (15 alleles)
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(b) BEAGLE APFA (c) Ron APFA

Figure 4: Thousand samples, short genome (15 alleles)
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Figure 5: Ten Thousand samples, short genome (15 alleles)
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Algorithm 7 BEAGLE Similarity
Require: Node u, Node v, Double n,, Double n,, Double threshhold

L: u_totalcount <= 3 o5y e Mu0

2: v totalcount <= 3 v, My0

3: if u_totalcount = v_totalcount = 0 then

4: Return 0

5. end if

6: if u_totalcount = 0 then

7: return Max difference between edges of v

8: end if

9: if v_totalcount = 0 then
10: return Max difference between edges of u
11: end if > Both u and v have outgoing edges with nonzero counts
12: localdiff(u,v) < maxy,esuc abs(my(o)/ng), abs(m,(o)/ny))

4 Phasing using a Learned APFA

To phase genotypes using learned APFA, hapROSE implements a multithreaded
modified stochastic EM algorithm of the same kind proposed by Browning and
Browning [Browning and Browning, 2007b] on an HMM that is built using the
edges of the learned APFA. Observed genotypes are treated as a series of ob-
servations, and seek to find the underlying state that is most likely to have
generated those observations. Each state in the HMM is a pair of edges, since
we are seeking the most likely pair of alleles that generated a particular allele
in the genotype at a given point in the sequence.

The algorithm samples potential generating haplotypes for a given genotype
with a probability proportional to the posterior distribution of each allele at
each position. This is inferred using the fwd-bwd algorithm on the underly-
ing inhomogenous diploid HMM. These sampled haplotypes are then used to
train another APFA in the next iteration of the algorithm. This process is
repeated for a number of iterations - hapROSE adopts the number that BEA-
GLE recommends, which is 10. After the final iteration of sampling from the
forward-backward algorithm, the most likely pair of haplotypes is chosen using
the viterbi algorithm on the final APFA.

Smoothing transition probabilities and pruning edges of the APFA has a
drastic effect on the speed of the algorithm - since we must consider all possible
pairs of edges, the runtime quickly becomes intractable on even short strings if
the input strings are very diverse. Let k be the largest number of edges at any

given depth in the APFA - this algorithm’s running time is O((S)Qm, where m
is the number of alleles in a genotype. This first binomial term squared quickly
dominates the runtime. BEAGLE’s variant is faster precisely because it relaxes
collapse conditions for lower node counts, when we are unlikely to have observed
a sufficient number of strings for two nodes to be u-indistinguishable, in the Ron
framework. Methods to prune this tree while preserving those paths most likely
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to have generated haplotypes are an excellent direction for future study.

4.1 The Diploid HMM

We now turn our attention to formally defining the inhomogenous diploid hmm,
and the phasing algorithm being used to infer genotype phasings.
An HMM [Rabiner, 1989] is a 5-tuple (O, X, 7, v, ) where

e X, the set of hidden states in the model

e Y the set of emitted symbols in the model

e 7, the state transition probability function

e 7 is the observation emission probability function

e 7 is the initial probability function

4.2 The Phasing Algorithm

Algorithm 8 Stochastic EM

: Construct Sample Tree

: Learn APFA

: Construct HMM

: for i iters do

sampledHaplotypes < fwd_bwd(genotypes)
sampleTree <— sampledHaplotypes
Learn APFA

Construct HMM

: end for

. sampledHaplotypes < viterbi(genotypes)
: return sampledHaplotypes

— =
= O

The phasing algorithm treats the genotype as a series of observations O1, Oo, .. . :

O; € YVi emitted by an HMM, whose underlying states X are pairs of edges in
the APFA at a particular depth. The transition probabilities from one state to
another depend on whether the parent nodes in one state are the child nodes of
the previous state, and if so, the probability 7 is computed as a function of the
edge counts. The initial probability function 7 is uniform.

Phasing proceeds by running the forward-backward algorithm on this HMM,
then sampling a potential explanatory pair of haplotypes from the posterior.
This process is repeated for a number of iterations - BEAGLE recommends 10.
Afterwards, the viterbi algorithm is run in order to get a maximum likelihood
estimate.

The forward-backward step significantly increases the size of the inferred
APFA, since it samples directly from the posterior at a given position, and does
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not take into account whether a state could have been transitioned to from the
previous state. Figure 5 shows how drastically an APFA can change after a
single round of resampling. This increases the runtime in future iterations, but
it reduces the likelihood of the model overfitting the reference haplotypes.
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(a) Before (b) After Resampling
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Figure 6: Resampling Complicates the Learned Apfa
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4.3 Iterative Sampling

In order to gauge the performance of the different heuristics across the different
iterations of the phasing algorithm, I took as my set of haplotypes the sequences
given in Browning and Browning’s 2006 paper, in particular, the idealized data
that they were using for figure 1. I randomly created genotypes out of those
haplotypes, and allowed hapROSE to use the true haplotypes as a reference
panel to start the first iteration of the algorithm.

The Ron algorithm was run with a p indistinguishability parameter of 0.5,
indicating that it would only perform a node collapse if the probability distri-
butions downstream of a node were very similar. The resulting APFA reflect
this, as the Ron APFA consistently contains more states at every level in every
iteration.

(a) 1 iteration (b) 5 iterations (c) 9 iterations

Figure 7: Node Collapse after Repeated Resampling (BEAGLE Heuristic)
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(c) 9 iterations

Figure 8: Node Collapse after Repeated Resampling (Ron Heuristic)

4.4 Phasing Accuracy: Ron vs BEAGLE

The next thing that needs to be ascertained is how well the phasing algorithm
performs when it is performing inference on an APFA that is being learned using
the BEAGLE variant, compared to how accurate phasing is when it is being
performed on an APFA that is being learned using the Ron variant. For this
section, all tests were performed on a machine running an Intel(R) Core(TM)
i7-4700MQ CPU @ 2.40 GHz (8 CPUs), with 8192MB of RAM.

Let us define the switch error as the fraction of positions for which the
phase between the two haplotypes is different relative to the previous position.
|Bansal et al., 2008] [Lin et al., 2002|. In other words, it is the number of times
in an inferred phasing that the alleles in the true phasing are wrongly assigned,
and we have to switch over to the other haplotype. In this section I explore the
switch error of the two approaches on the same input training data, as estimated
using a monte carlo approach. I do this for both short-range(100 alleles) and
long-range (1000 alleles) phasing problems. The haplotypes that I was sampling
from were generated by the hudson ms simulator. [Hudson, 2004]

For many of the following trials, I was using a reference panel of 44 haplo-
types to phase 22 randomly generated genotypes. These numbers were chosen
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due to memory constraints on the machine used to benchmark performance.

The distinguishability parameter p that controls the threshhold at which
the Ron et al. algorithm collapses nodes is chosen in all cases to be what
I empirically felt would be a good balance between speed and accuracy, and
performs at a speed comparable to that of BEAGLE.

4.4.1 Short-Range Phasing

The pool of sampled haplotypes was generated using the hudson simulator by
running the command

ms 100 1 -t 5 -s 100 -r 100.0 2501

Randomized genotypes were then created from randomly selected haplo-
types. These haplotypes became the reference panel to start the iterations, and
the genotypes were then phased using the stochastic EM algorithm.

To compare the effect of phasing 22 genotypes to the effect of phasing 50
genotypes, I needed to relax the value of p to 0.75 so that the Ron algorithm
would terminate in a timely manner.

Table 1: EM results - 22 genotypes of length 100

Heuristic Num Phased | Time(mins) | Switch Error | Var
Ron, 4 =0.5 22 2 0.056 4.9E-4
Browning 22 1.5 0.067 5.3E-4
Ron, 4 =0.75 | 50 57 .058 .001
Browning 50 52 0.046 4E-4

4.4.2 Long-Range Phasing

As in the short range phasing case, I simulated haplotypes using the Hudson
ms simulator, as follows:

ms 100 1 -t 5 -s 1000 -r 100.0 2501 > 100samps_lenl000.txt

Scaling up to long range phasing led to a slowdown in the Ron algorithm as
well. I ran it at both ¢ = 0.5 and g = 0.75 in order to compare the results.

Table 2: EM results - 22 genotypes of length 1000

Heuristic Num Phased | Time(mins) | Switch Error | Var
Ron, p=10.5 22 43 .044 -TE-8
Browning 22 37 0.049 1.8E-5
Ron, p=0.75 | 22 37 .039 9E-5
Browning 22 30 0.03 8E-5
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We see that at the tighter threshhold, the Ron algorithm takes a bit longer
to perform the inference, but has a lower switch error. At the looser threshhold,
it still takes longer to perform the inference, but now it has a higher switch
error.

4.5 Scaling with Number of Reference Haplotypes

To compare how the Ron heuristic would compare to BEAGLE when run at a
comparable speed on different sized reference panels, I relaxed the pu parameter
in order to encourage more node collapse in the Ron algorithm, speeding the
algorithm up dramatically. I also ran it on a shorter set of genotypes to enable
me to perform thousands of simulations without the task becoming prohibitively
time consuming.

What follows are the results of performing 100 separate phasings of 10 itera-
tions each on both a small number of reference haplotypes, and a large number
of reference haplotypes.

4.5.1 Small number of reference haplotypes

To generate this data, I performed phase inference on the same 50 randomly
sampled genotypes for both Ron and BEAGLE, and calculated the mean switch
error and variance. I did this for a short-range dataset of 15 alleles, designed to
have 3 haplotype blocks.

Note that in this case, unlike in previous tables, the switch error is averaged
across 100 independent runs of the algorithm, and the variance refers to the
variance of the average switch error.

Table 3: EM results - 50 genotypes of length 15, repeated 100 times

Heuristic Num Phased | Time(mins) | Avg(Switch Error) | Var
Ron, p=1.15 | 50 5) 125 .009
Browning 50 4 0.097 0.007

4.5.2 Large number of reference haplotypes

The next question was to test how the algorithms performed 100 separate phas-
ings of 10 iterations each on the same 200 randomly sampled genotypes for both
Ron and BEAGLE, and calculated the mean switch error and variance. I did
this for a short-range dataset of 15 alleles, designed to have 3 haplotype blocks.
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Table 4: EM results - 200 genotypes of length 15, repeated 100 times

Heuristic Num Phased | Time(mins) | Avg(Switch Error) | Var
Ron, 4 =1.07 | 200 12:40 .130 .010
BEAGLE 200 14:30 0.079 0.005

4.6 Summary of Results

For short and long range phasing, the Browning heuristic outperforms the Ron
heuristic at the chosen parameter in almost every case in terms of speed, but is
less accurate in terms of accuracy.

When tests were ran to determine how they scale to the size of the reference
panel, the Ron algorithm slowed down dramatically, so I was forced to repeatedly
adjust the p threshhold in order to encourage a higher speed. Predictably, the
Ron et. al. algorithm ran faster with a larger distinguishability parameter, but
was much less accurate and exhibited a higher variance. Tuning this parameter
to get a good balance of phasing and speed is a difficult task, and on larger
reference panels BEAGLE’s dynamic adjustment of the similarity threshhold is
welcome. On smaller reference panels on the order of two dozen individuals,
Ron’s algorithm runs in comparable speed and with higher accuracy.

5 Tracts for Genotype Phasing and Inference

An important tool that we can leverage to help us phase long range is the
concept of a shared tract between individuals. A tract is a substring shared by
multiple haplotypes in a set, with the additional property that it must begin at
the same position ¢ and end at the same position j in each haplotype. A tract
is said to be a maximal shared tract if it cannot be extended in either direction.

This tract information can be used to great effect when inferring haplotype
phase. It is possible to generalize the concept of Clark Phasing to that of
a Clark Consistency Graph [Halldorsson et al., 2011], a structure that models
the relationship between some haplotypes that may share a sequence IBD, and
allows us to phase a large number of genotypes if a sufficient number of shared
haplotypes between them are known.

This is done by drawing an edge between any two genotypes that are known
to share a tract - any cliques in this graph indicate that the tracts can be used
to reliably “vote” on the most likely phasing of a particular allelic substring
in an individual. This implies a method for phasing that bypasses the need to
construct an APFA solely using a similarity function, instead relying on known
shared tracts in order to determine its structure.

There is currently a wide variety of methods for finding tracts available to
us, and they are discussed here briefly. Yet, many of these methods require a
reference panel of already phased haplotypes, in a similar way that many long
range phasing algorithms require some sort of reference panel in order to begin to
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cluster haplotypes. Detecting tracts in genotypes is a challenging computational
problem because genotypes contain ambiguous characters, so you run into the
same potential pitfalls as in phasing - if you encounter an ambiguous site, the
number of potential tracts present can skyrocket. When two genotypes match
one another, there is no guarantee that this is transitive - a third genotype can
match both of those genotypes, and yet all three together may not share the
same haplotype. As an example, consider the genotypes

0012021
0210011
0210021

They match one another, in that of the four haplotypes that compose those
two genotypes, there is potentially one haplotype from one of the genotypes
can share a tract with one haplotype from the other genotype. For example,
consider the phasing

0011001
0010011

0010011
0110011

0110011 OR 0110001
0010001 0010011

We notice that the second haplotype of the first genotype is identical to the
first haplotype of the second genotype. Likewise, we can choose some phasing
of the third genotype that will result in a matching tract with either the first
genotype or the second genotype. We cannot, however, identify a tract that is
common to all three.

When presented only with genotypes this sort of rough approximation that
identifies a potential tract is a good place to begin. We may also be able to
ignore the wildcard characters and only consider those homozygous portions
of genotypes where multiple haplotypes agree - in this case, a shared tract
is unambiguous. Since we do not know the phasing of genotypes a priori, a
single genotype can match other genotypes, in fact a very large number of
other genotypes, very easily. This is due to the fact that they can have any
number of a large number of potential generating haplotypes. As a matter of
fact, as was proven earlier in this paper, a single genotype can have up to 2"
generating haplotypes, where n is the number of different ambiguous sites that
are present in the genotype. Yet, finding tracts is so important because we
can use them to help us infer phase because we are using a powerful coalescent
model which allows us to map different people who may be homozygous at some
particular subsection of their genome to other people who are heterozygous, but
may contain a haplotype in common with the individual that was homozygous.
The underlying principle of the above inference algorithms is that the same
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haplotypes, or subsequences of haplotypes, occur often in the population as a
result of recombination.

Is there a way, then, to identify all such potential tracts in a set of genotypes?
Current methods for finding tracts for haplotypes offer a good place to start.

5.1 Tractatus and Lumbertracts

Istrail Lab currently has an implementation of an algorithm called Tractatus,
which is a suffix tree algorithm designed to find all tracts in a set of phased
haplotypes in linear time. A colleague of mine, Daniel Seidman, is working on a
way to generalize this result to haplotypes with wildcards, implying a potential
mechanism for finding all possible tracts in genotypes.

5.2 PBWT and a Potential Variant

Recently, an algorithm called the Positional Burrows Wheeler Transform has
been described, and it has been used to great effect in order to find all tracts in
a set of haplotypes in linear time. [Durbin, 2014]

It does this by taking the set of haplotypes and going through all rotations
of the resulting array, sorting the reverse prefixes of the haplotypes at each step
and using the fact that after being sorted adjacent haplotypes are very similar
to one another in order to reduce runtime while still finding set-maximal exact
matches.

I am exploring a variation of this algorithm that promises to be able to
identify potential tracts between genotypes - it involves a simple modification
in the algorithm whereby, in sort order, the alphabet is ordered 0 < 2 < 1.
In the matching phase of the algorithm, we consider a 2 to match either a 0
or a 1. The rest of the algorithm proceeds as normal, except instead of simply
comparing a string to a string above it (a downward pass) we must also compare
strings to the strings below it (a second upward pass). This allows us to identify
any places where a wildcard matches a 0 in the downward pass, and any places
where a wildcard matches a 1 in the upward pass. This provides a mechanism
for finding at least some matching tracts in genotypes, and I conjecture that it
may be able to find all such potential shared tracts.

An issue with this method is that, as mentioned above, finding tracts is not
pairwise transitive. More precisely, this method can find genotype substrings
that are part of the same connected component in the Clark Consistency Graph,
but does not identify cliques. We make this statement more precise as follows:

The different rotations ¢ = 0,--- ,n — 1 of the PBWT allow us to extract
information about the underlying Clark Consistency Graph on the subset of
genome sequences that end at index i.

Consider a particular rotation of the PBWT and the accompanying sorted
order of genotypes - we can partition the ordered genotypes into “match blocks”,
where the first genotype in the block contains the longest maximal match with
an adjacent genotype in the block, and the final genotype in the block contains
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the shortest nontrivial (a greater length than would likely occur by chance)
maximal match with an adjacent genotype in the block.

Define a Clark Consistency Graph consisting of nodes that are sequences
which begin where the shortest nontrivial maximal match begins, and ends at
the position currently being considered by the rotation, with an edge between
nodes if the sequences can share a haplotype. Since, the way the algorithm
is defined, two adjacent genotypes can only have a match if they can share a
haplotype, and since there is a unique length for the shortest maximal match in
the set, then all adjacent genotypes in the block can share a haplotype, which
is to say we can find a path in the graph from the first sequence to the last
sequence.

We now turn our attention to the problem of finding any cliques in the graph,
since the genotypes that comprise the vertices in the clique can be phased by
positing that they each share a common haplotype, then taking the complement
to complete the phase.

We begin by examining each match block, which we now know to be com-
prised of genotypes which are connected in the underlying graph that considers
all sequences within the block up to the length of the shortest nontrivial match.
If two non-adjacent genotypes in a match block can share a haplotype, then
they share that haplotype with all genotypes in between them. The proof is
by contradiction - let us assume two non adjacent genotypes share a haplotype
with each other but not with every genotype in between. One of the two geno-
types must come first in the sort ordering, and it must share a haplotype with
the next genotype in the match block, and that one must share a haplotype
with the adjacent one, and so on and so forth until the second genotype, or
they wouldn’t be part of the same match block. Two genotypes do not match
when there is a homozygous position in one genotype, and the opposite allele is
homozygous in the other genotype.

By the way the haplotypes are sorted, each block starts long at the “top” and
gets shorter as haplotypes begin to differ in sort order until finally the match
grows too short. If we consider only those match blocks with two or more
genotypes, then we can see that all genotype substrings from where the PBWT
has rotated the sequences to, to the length of the shortest match, are connected
in the Clark Consistency Graph. For example, in a match block consisting of

20200000000000010000110001100001000111010001100110000000000000001000
2200000000000002002022000110000200012222000222022200000000020000
22000000000002000010000001100002020

22000000000020200020000002

Where the bottommost match begins at index ¢ and ends at index j. Each
genotype can share a partial haplotype with the genotype below, so we define
the Clark Consistency Graph on the substrings beginning at ¢+ and ending at 7,

20200000000000010000110001
22000000000000020020220001
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Figure 9: An abstraction of the shortening pattern of match blocks

22000000000002000010000001
22000000000020200020000002

and they are connected, as desired. Since we can draw an edge between the
2nd haplotype and the 4th,

22000000000000020020220001
22000000000020200020000002

because they can share the haplotype
11000000000000000010000001

then we must be able to draw that edge between all haplotypes between
them, so this comprises a clique. Inspection shows that this haplotype can
indeed be shared between the second and 3rd, and the 3rd and 4th genotypes.

I further conjecture that there is an equivalence between the PBWT, an
algorithm on suffix arrays, and Tractatus, an algorithm on suffix trees, which
would imply that solving a genotype tract finding problem on one of those
structures would provide a solution to solving a genotype tract finding problem
on the other structure.

5.3 Algorithms leveraging Tract Information

Computationally efficient tract finding is currently an active field of research.
Browning and Browning have recently released a version of BEAGLE that per-
forms haplotype imputation which scales to over a million of reference genomes.
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Match Blocks (Concrete Example)

200000000000202200002200022000220002220222022002220000000020000222222
200000000000222000200000022000200200002022000200010000000020000222221
20000000200000020200
200000002000202002002000022020020020002022000202220020200000020002222
200000020000202000200000022000020002001000000100010000000000000022221
200000020000202000200000022000020002001000000100010000000000000022221
202000000000000
20200000000000010000110001100001000111010001100110000000000000001000
2200000000000002002022000110000200012222000222022200000000020000
22000000000002000010000001100002020

22000000000020200020000002

Figure 10: An example of matchblocks, using simulated genotype data

[Browning and Browning, 2016] This uses a different clustering model based on
the Li Stephens framework - the imputation problem is on a haploid HMM
rather than a diploid HMM, so there are significantly fewer states in the hap-
loid HMM as compared to the diploid HMM.

In addition to this, an algorithm using the PBWT was recently been pro-
posed for inferring diploid haplotypes, also in the Li Stephens framework, treat-
ing each state as a tract that generates a sequence of observations rather than a
single allele. This algorithm provides implementations of both a viterbi-like algo-
rithm and what is termed a FastLS (Fast Li Stephens) which has a runtime that
is constant in the number of haplotypes in the reference panel. [Lunter, 2016]

6 Conclusion

HapROSE was written with the intent of serving as both a way to bring multiple
implementations of haplotype phasing “under one roof”, so to speak, so that
we could perform benchmarking by measuring the properties and behaviors of
different heuristics. In particular, we looked at how the Browning Similar func-
tion produced different learned APFA than the Ron Similar function at lower
amounts of reference data, and discussed whether Browning’s improved speed
came at a particularly high cost when it came to accuracy. Since HapROSE
is all in a single software package, the effects of the heuristics on speed and
accuracycould be studied and compared in a controlled environment where the
same optimizations are performed for each heuristic.

The major findings of this paper are that the BEAGLE similarity heuristic
allows the stochastic EM algorithm to perform more accurate phasing than the
Ron et. al. heuristic when they are tuned to run for roughly the same period
of time, but the Ron outperforms BEAGLE at tighter values of its distance
parameter at the cost of increased runtime.
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7 Future Directions

7.1 Faster Phasing

The algorithms studied here would benefit greatly from the introduction of more
information to help guide the inference being performed. In particular, knowing
what sorts of tracts appear in the reference haplotypes will allow for faster train-
ing of the models, and knowing how those tracts correlate over longer ranges
can help overcome the limitations of assuming that allele sequences possess the
Markov property - something that helps to greatly speed up the inference, but
ultimately sacrifices accuracy since any long-term correlations between haplo-
type blocks are lost.

In terms of ways to improve the speed of a phasing algorithm, it is unneces-
sary to perform the entire forward-backward and viterbi algorithm on the entire
length of the genotype to be phased when, in reality, we are only interested in
a small local subset of frequent haplotypes. The entire model is so efficient
precisely because we are leveraging the Markov property, so we may be able to
discard potential noise from far-away segments of the genome that propagate
throughout the chain during the message passing steps of the forward back-
ward algorithm simply by performing inference on a structure with a given max
depth. It may be more prudent, and similarly accurate, to train a model with
limited depth that was able to capture every haplotype block, while itself only
being a fraction of the length of the whole sequence.

To this end, it may be possible to adapt the Predictive Suffix Tree to this
purpose [Ron et al., 1996]. This data structure, defined in depth in another
paper by Ron et. al., takes in a prefix of a suffix (a substring) and provides a
next symbol probability, over all symbols in the alphabet.

It is conceivable to have one such tree of adequate depth predicting the
next symbol in the forward direction, and another such tree of adequate depth
predicting the next symbol in the backward direction. Since we have algorithms
that construct suffix trees in linear time, there may be a way to construct and
perform inference of similar quality much faster using this data structure.

7.2 More Accurate Phasing

To provide a more accurate phasing, we have to go the other way. Rather
than choosing to forget more to speed up phasing, we need to introduce more
information about the haplotypes and genotypes. A natural next step for this
research is to augment the existing implementation to leverage the output of
HapCompass in order to guide the training of the model such that more weight
can be assigned to those edges that correspond to observed phased pairs of
alleles in short regions.

Another excellent resource for improving phase estimates are the long reads
produced by Pacific Biosciences (PacBio)[Biosciences, 2016], which can reach
over 20k kilobases in length. Data of this kind is a unique source of long-range
phasing information, since it will help us to find more correlated SNPs that may
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be separated by long distances on the genome. These longer correlations are
difficult to detect, and may even be completely lost when training the model. To
incorporate this sort of information into an inference algorithm would require
a thorough understanding of the PacBio read error model, but it can be used
to strongly influence either the model building phase or the calculation of the
posterior distribution of the diploid HMM.
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